. 24/7 Space News .
WATER WORLD
Most streamflow in the upper Colorado River basin originates as groundwater
by Staff Writers
Washington DC (SPX) May 12, 2016


The Colorado River near Moab, Utah. The entire Colorado River Basin currently supports 50 million people, and that amount is expected to increase by 23 million between 2000 and 2030. A new USGS study shows more than half of the streamflow in the Upper Colorado River Basin originates as groundwater. Image courtesy USGS. For a larger version of this image please go here.

More than half of the streamflow in the Upper Colorado River Basin originates as groundwater, according to a new U.S. Geological Survey study published in the journal Water Resources Research.

The entire Colorado River Basin currently supports 50 million people, and that amount is expected to increase by 23 million between 2000 and 2030. On average, 90 percent of streamflow in the Colorado River Basin originates in the Upper Basin, which is the area above Lees Ferry, Arizona.

This water has a multitude of uses that include irrigation, municipal and industrial purposes, electric power generation, mining activities, recreation, and supporting habitat for livestock, fish and wildlife.

Scientists used a new method to more accurately estimate the percentage of groundwater that supports streamflow. Researchers studied long-term records of water chemistry and streamflow data at 146 sites in the Upper Colorado River Basin in Colorado, Utah, New Mexico and Arizona.

These data were then analyzed to create a model to predict and map where streamflow originates in the basin. On average, 56 percent of the streamflow in the basin originated from groundwater.

"These findings could help decision makers effectively manage current and future water resources in the Colorado River Basin," said Matthew Miller, a USGS scientist and the lead author of the study.

"In light of recent droughts, predicted climate changes and human consumption, there is an urgent need for us all to continue to think of groundwater and surface water as a single resource."

The model estimates the amount of water lost during stream transport to the Lower Colorado River Basin, which is due largely to withdrawals for irrigation and evaporation to the atmosphere.

In the high elevation headwaters of the Colorado River Basin, there is a greater percentage of snowmelt and precipitation contributing to the surface-water streamflow. As water flows further into the basin at lower elevations, a greater percentage of streamflow is from groundwater.

These results provide a modeled snapshot of present-day groundwater and surface water conditions at a regional scale and will serve as a foundation for future studies that predict groundwater response to climate and human induced change.

"This is a step in the right direction to further our ability to address regional to global scale water management challenges in both the Upper Colorado River Basin and other watersheds throughout the world," said Miller.

Water data were analyzed using the USGS Spatially Referenced Regressions On Watershed attributes (SPARROW) water-quality modeling framework. Information on SPARROW modeling applications, data and documentation can be accessed online.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
US Geological Survey
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
Extreme rainfall doesn't always mean extreme erosion
Philadelphia PA (SPX) May 11, 2016
In the Puerto Rican rain forest, a strong storm can drop a meter of rain in a single day. All that water rushes into mountain rivers and causes a torrent as the water overflows the riverbanks and charges downstream. It seems intuitive that the force of so much water would lead to massive erosion of a riverbed. But according to a new study by University of Pennsylvania researchers, that int ... read more


WATER WORLD
NASA research gives new insights into how the Moon got inked

First rocket made ready for launch at Vostochny spaceport

Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

WATER WORLD
Clues about Volcanoes Under Ice on Ancient Mars

Second ExoMars mission moves to next launch opportunity in 2020

Although Boiling, Water Does Shape Martian Terrain

Boiling water may be cause of Martian streaks: study

WATER WORLD
NASA Awards Contract for Aeronautics, Exploration Modeling, Simulation

Michael Watkins Named Next JPL Director

US to move more assets into deep space over next 4 years

Simulators give astronauts glimpse of future flights

WATER WORLD
China's space technology extraordinary, impressive says Euro Space Center director

China can meet Chile's satellite needs: ambassador

China launches Kunpeng-1B sounding rocket

South China city gears up for satellite tourism

WATER WORLD
New landing date for ESA astronaut Tim Peake

Tim Peake goes roving

Russia delays space crew's return to Earth

15 years of Europe on the International Space Station

WATER WORLD
SpaceX successfully lands rockets first stage after space launch

SpaceX lands rocket's first stage after space launch

Agreement Signed for Airbus Safran Launchers

SpaceX to launch Japanese satellite early Friday

WATER WORLD
Scientists discover potentially habitable planets

MIT compiles list of potential gases to guide search for life on exoplanets

Three potentially habitable worlds found around nearby ultracool dwarf star

Light Echoes Give Clues to Protoplanetary Disk

WATER WORLD
Design tool enables novices to create bendable input devices for computers

Molybdenum disulfide holds promise for light absorption

Accelerating complex computer simulations: thinking beyond ones and zeros

Machine learning accelerates the discovery of new materials









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.