. 24/7 Space News .
EARTH OBSERVATION
Monitoring the air pollution in China from geostationary satellites is explored
by Staff Writers
Beijing, China (SPX) Oct 10, 2018

This is the solar zenith angle and the viewing zenith angle of target pixels of geostationary satellite.

Air quality, particularly regional and urban air pollution, has become one of the most important environmental issues worldwide. The increasing of pollutants in the troposphere (e.g., O3, SO2, NO2 and HCHO) causes heavy health problems of human. Monitoring the air pollutants from satellite is an important approach to study the temporal and spatial distribution of pollutants and control air pollution around the world.

In previous years, measurements in the ultraviolet (UV), visible, and thermal infrared (TIR) bands from low-Earth-orbit (LEO) satellites are used widely to retrieve the concentration of tropospheric pollutants. Until now, some LEO satellites have been launched successfully by the United States, Europe and China aimed to observing tropospheric air pollutants.

However, the spatial and temporal resolution of LEO satellites are so low that limiting the retrieval precision of pollutants. This uncertainties of concentration of pollutants affect the monitoring of air quality and research about atmospheric physical and chemical process. Compared with LEO satellite, geostationary satellite has the ability of staring the observed target all the time, so that the observing intensity and the spatial and temporal resolution of measurements are improved.

As reported, some geostationary satellites are planned to be launched in North American, East Asia, and Europe between 2018 and 2020 to monitoring regional air pollution. Whereas, there is still not similar satellite plan in China.

The theoretical feasibility of measuring the atmospheric pollutants O3, SO2, NO2, and HCHO in China using geostationary satellites is explored in recent study. "we try to choose parameters of instrument onboard geostationary satellite for measuring air pollution in China," according to Zhaonan Cai and Xi Chen, scientists at the Institute of Atmospheric Physics, Chinese Academy of Sciences, in Beijing, China.

In an article coauthored with Fishman et al., researchers stated: "To measure O3 profiles in the boundary layer, the independent information content of O3 in the boundary layer should be greater than 2 ppb, and the retrieval uncertainty should be less than 10 ppb. NO2 pollution can be distinguished from background levels when the retrieval precision of tropospheric NO2 is greater than 1+ 10 15 molecules cm-2 and the spatial resolution of hourly observations is less than 8 km."

Based on these requirements of the retrieval precision of O3, SO2, NO2, and HCHO, four scholars revealed in the study, which was published in the Science China Earth Sciences the impacts of the sensor parameters (e.g., SNR and spectral resolution) on the retrieval sensitivity and errors of pollutants using the optimal estimation method.

Research aimed at finding appropriate parameters for the spectrometer used on geostationary satellite focusing on air pollutants measurements in China. To validate these sensor parameters, the three-dimension (3D) distributions of H2O, O3, NO2, SO2, and HCHO in China were simulated by the 3D atmospheric chemical transport model GEOS-Chem for the simulated retrieval experiments.

"As many as 90% of the experiments met the retrieval requirements for all target polluted gases. The retrieval uncertainties of total column O3 and stratospheric column O3 could be improved to 2%," the researchers wrote in an article titled "Monitoring air pollution in China from geostationary satellite: A synthetic study using simulated observations."

"These sensor parameters have the ability to meet the retrieval precision requirements of the target gases," they concluded.

Considering the polluted gases have strong absorption of solar radiation in UV and visible band, the absorption spectrum from geostationary satellites over China and the surrounding areas need to be simulated. A forward model consisting of a vector radiative transfer model, instrument model, surface model, and atmospheric model is used from simulation.

From the simulated spectrum, the change of instrument parameters (e.g., spectral resolution, retrieval bands, and signal-to-noise SNR) with the retrieval sensitivities and errors of the gases are shown according to the optimal estimation theory. Given the requirement of retrieval precision of polluted gases, the observing band, spectral resolution and SNR of the sensor are suggested 300~500 nm, 0.6 nm and 1000, respectively. This study firstly recommends the reasonable sensor parameters aimed to air pollutants observation over China from geostationary satellite.

"To monitor the air pollution focuses on China," wrote the four researchers, "this study offers a theoretical basis and simulation tool for improving the design of instruments onboard geostationary satellites."

Chen X, Cai Z, Liu Y, Yang D. 2018. Monitoring air pollution in China from geostationary satellite: A synthetic study using simulated observations. Science China Earth Sciences, 61


Related Links
Science China Press
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
NOAA'S JPSS-2 satellite passes critical design review
Washington DC (SPX) Oct 09, 2018
Last month, as satellites fed a steady stream of data into models tracking the paths of Hurricane Florence and Typhoon Mangkhut, the next in a fleet of satellites designed to monitor weather and climate cleared its critical design review, or CDR. JPSS-2, or Joint Polar Satellite System-2, will join NOAA-20 in a series of polar-orbiting satellites to monitor the Earth's atmosphere, land and oceans. NASA builds the JPSS series of satellites, and NOAA will operate them. "It will measure the tem ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
Space Station Crew Returns to Earth, Lands Safely in Kazakhstan

First UAE Astronaut to Fly to ISS for 11-Day Mission on April 5, 2019

NASA skeptical on sabotage theory after mystery ISS leak

Russia to help India in its first manned space mission

EARTH OBSERVATION
First SpaceX mission with astronauts set for June 2019: NASA

Aerojet Rocketdyne Successfully Tests Hypersonic DMRJ Engine

SpaceX uses dumping to drive Russia out of space launch market claims Roscosmos

SLS chief engineer driven by 'challenge' of building rocket

EARTH OBSERVATION
Curiosity Rover to Temporarily Switch 'Brains'

Novel Technique Quickly Maps Young Ice Deposits and Formations on Mars

Curiosity rover operating on backup computer during repairs to main processor

Opportunity Remains Silent For Over Three Months

EARTH OBSERVATION
China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

EARTH OBSERVATION
Maxar's SSL Continues Positive Momentum in Growing US Government Pipeline

Britain and Australia enter into space agreement

How Max Polyakov from Zaporozhie develops the Ukrainian space industry

Reflecting on Europe's commanding role in space

EARTH OBSERVATION
Study identifies genetic mutations among children of soldiers exposed to radiation

Northrop Grumman to provide spares for Hawkeye radar planes

Maxar's SSL selected by NASA to develop critical technologies for on-orbit servicing

Study opens route to flexible electronics made from exotic materials

EARTH OBSERVATION
Liquid crystals and the origin of life

'Spacesuits' protect microbes destined to live in space

Astronomers find first evidence of possible moon outside our Solar System

New tool helps scientists better target the search for alien life

EARTH OBSERVATION
While seeking Planet X, astronomers find a distant solar system object

New Horizons sets up for New Year's flyby of Ultima Thule

Extremely distant Solar System object found

New Horizons Team Rehearses For New Year's Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.