Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















CHIP TECH
Method improves semiconductor fiber optics, paves way for developing devices
by Staff Writers
University Park PA (SPX) Apr 18, 2017


Amorphous silicon core is inside a 1.7-micron inner-diameter glass capillary. Image courtesy Penn State.

A new method to improve semiconductor fiber optics may lead to a material structure that might one day revolutionize the global transmission of data, according to an interdisciplinary team of researchers. Researchers are working with semiconductor optical fibers, which hold significant advantages over silica-based fiber optics, the current technology used for transmitting nearly all digital data. Silica - glass - fibers can only transmit electronic data converted to light data.

This requires external electronic devices that are expensive and consume enormous amounts of electricity. Semiconductor fibers, however, can transmit both light and electronic data and might also be able to complete the conversion from electrical to optical data on the fly during transmission, improving delivery speed.

Think of these conversions as exit ramps on the information superhighway, said Venkatraman Gopalan, professor of materials science and engineering, Penn State. The fewer the exits the data takes, the faster the information travels. Call it "fly-by optoelectronics," he said.

In 2006, researchers, led by John Badding, professor of chemistry, physics, and materials science and engineering, first developed silicon fibers by embedding silicon and other semiconductor materials into silica-fiber capillaries. The fibers, comprised of a series of crystals, were limited in their ability to transmit data because imperfections, such as grain boundaries at the surfaces where the many crystals within the fiber core bonded together, forced portions of the light to scatter, disrupting the transmission.

A method designed by Xiaoyu Ji, doctoral candidate in materials science and engineering, improves on the polycrystalline core of the fiber by melting a high-purity amorphous silicon core deposited inside a 1.7-micron inner-diameter glass capillary using a scanning laser, allowing for formation of silicon single crystals that were more than 2,000 times as long as they were thick. This method transforms the core from a polycrystal with many imperfections to a single crystal with few imperfections that transmits light much more efficiently.

That process, detailed in a trio of articles published in ACS Photonics, Advanced Optical Materials, and Applied Physics Letters early this year, demonstrates a new methodology to improve data transfer by eliminating imperfections in the fiber core that can be made of various materials. Gopalan said equipment constraints kept the crystals from being longer.

Because of the ultra-small core, Ji was able to melt and refine the crystal structure of the core material at temperatures of about 750 to 930 degrees Fahrenheit, lower than a typical fiber-drawing process for silicon core fibers. The lower temperatures and the short heating time that can be controlled by the laser power and the laser scanning speed also prevented the silica capillary, which has different thermal properties, from softening and contaminating the core.

"High purity is fundamentally important for high performance when dealing with materials designated for optical or electrical use," said Ji.

The important takeaway, said Gopalan, is that this new method lays out the methodology for how a host of materials can be embedded into fiber optics and how voids and imperfections can be reduced to increase light-transfer efficiency, necessary steps to advancing the science from its infancy.

"Glass technology has taken us this far," said Gopalan. "The ambitious idea that Badding and my group had about 10 years ago was that glass is great, but can we do more by using the numerous electronically and optically active materials other than plain glass. That's when we began trying to embed semiconductors into glass fiber."

Like fiber-optic cable, which took decades to become a reliable data-delivery device, decades of work likely remains to create commercially viable, semiconductor fiber networks. It took 10 years for researchers to reach polycrystalline fibers to specifications that are far better, but are still not competitive with traditional fiber-optic cable.

"Xiaoyu has been able to start from nicely deposited amorphous silicon and germanium core and use a laser to crystallize them, so that the whole semiconductor fiber core is one nice single crystal with no boundaries," said Gopalan. "This improved light and electronic transfer. Now we can make some real devices, not just for communications, but also for endoscopy, imaging, fiber lasers and many more."

Gopalan said he is not only in the business of creating commercially viable materials. He is interested in dreaming big and taking the long view on new technologies. Perhaps one day, every new home constructed might have a semiconductor fiber, bringing faster internet to it.

"This is why we got into this in the first place," said Gopalan. "Badding's group was able to figure out how to put silicon and germanium and metals and other semiconductors into the fiber, and this method improves on that."

CHIP TECH
Top chipmaker TSMC says forex fluctuation hits Q1 earnings
Taipei (AFP) April 13, 2017
Microchip giant Taiwan Semiconductor Manufacturing blamed currency fluctuations as it posted a slump in first quarter earnings Thursday, warning that growth was unlikely to pick up before the second half of the year. Analysts said TSMC, a key supplier for Apple although it has never officially confirmed the connection, would likely get a boost from the launch of the iPhone 8, expected aro ... read more

Related Links
Penn State
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CHIP TECH
Russian, American two-man crew blasts off to ISS

Orbital ATK launches cargo to space station

Soyuz-FG rocket to be installed at Baikonur on April 17

US giant Discovery plans huge Costa Rica eco-resort

CHIP TECH
Russia and US woo Brazil, hope to use advantageous base for space launches

Creation of carrier rocket for Baiterek Space Complex to cost Russia $500Mln

Dream Chaser to use Europe's next-generation docking system

Europe's largest sounding rocket launched from Esrange

CHIP TECH
Mars spacecraft's first missions face delays, NASA says

France, Japan aim to land probe on Mars moon

NASA's MAVEN reveals Mars has metal in its atmosphere

Opportunity Mars rover on the way to Perseverance Valley

CHIP TECH
Ticking Boxes with Tianzhou

Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

CHIP TECH
Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

Antenna Innovation Benefits the Government Customer

Ukraine in talks with ESA to become member

CHIP TECH
Tweaking a molecule's structure can send it down a different path to crystallization

Apple touts greater use of recycled metal in gadgets

Lasers measure jet disintegration

Computers create recipe for two new magnetic materials

CHIP TECH
Potentially Habitable Super-Earth is a Prime Target for Atmospheric Study

Evidence for Habitable Region Within Saturn's Moon Enceladus

Science fiction horror wriggles into reality with discovery of giant sulfur-powered shipworm

Earth-Sized 'Tatooine' Planets Could Be Habitable

CHIP TECH
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement