Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















IRON AND ICE
Psyche to offer unique look at early terrestrial planet formation
by Staff Writers
Tempe AZ (SPX) Jan 05, 2017


The Psyche mission spacecraft will include a multispectral imager (pictured), which will be led by an ASU science team and will provide high-resolution images using filters to differentiate between the asteroid's metallic and silicate components.

Arizona State University's Psyche Mission, a journey to a metal asteroid, has been selected for flight under NASA's Discovery Program, a series of lower-cost, highly focused robotic space missions that are exploring the solar system.

The mission's spacecraft is expected to launch in 2023, arriving at the asteroid in 2030, where it will spend 20 months in orbit, mapping it and studying its properties.

It is the first time ASU will lead a NASA space exploration mission. The project is capped at $450 million.

"This mission, visiting the asteroid Psyche, will be the first time humans will ever be able to see a planetary core," said principal investigator Lindy Elkins-Tanton, director of ASU's School of Earth and Space Exploration (SESE). "Having the Psyche Mission selected for NASA's Discovery Program will help us gain insights into the metal interior of all rocky planets in our solar system, including Earth."

Psyche, an asteroid orbiting the sun between Mars and Jupiter, is made almost entirely of nickel-iron metal. As such, it offers a unique look into the violent collisions that created Earth and the other terrestrial planets.

The scientific goals of the Psyche mission are to understand the building blocks of planet formation and explore firsthand a wholly new and unexplored type of world. The mission team seeks to determine whether Psyche is a protoplanetary core, how old it is, whether it formed in similar ways to the Earth's core, and what its surface is like.

"The knowledge this mission will create has the potential to affect our thinking about planetary science for generations to come," ASU President Michael M. Crow said. "We are in a new era of exploration of our solar system with new public-private sector partnerships helping unlock new worlds of discovery, and ASU will be at the forefront of that research."

Psyche - a window into planetary cores
Every world explored so far by humans (except gas giant planets such as Jupiter or Saturn) has a surface of ice or rock or a mixture of the two, but their cores are thought to be metallic. These cores, however, lie far below rocky mantles and crusts and are considered unreachable in our lifetimes.

Psyche, an asteroid that appears to be the exposed nickel-iron core of a protoplanet, one of the building blocks of the sun's planetary system, may provide a window into those cores. The asteroid is most likely a survivor of violent space collisions, common when the solar system was forming.

Psyche follows an orbit in the outer part of the main asteroid belt, at an average distance from the sun of about 280 million miles, or three times farther from the sun than Earth. It is roughly the size of Massachusetts (about 130 miles in diameter) and dense (7,000 kg/m).

"Being selected to lead this ambitious mission to the all-metal asteroid Psyche is a major milestone that reflects ASU's outstanding research capacity," said Sethuraman Panchanathan, executive vice president and chief research and innovation officer at ASU. "It speaks to our innovative spirit and our world-class scientific expertise in space exploration."

Mission instrument payload
The spacecraft's instrument payload will include magnetometers, multispectral imagers, a gamma ray and neutron spectrometer, and a radio-science experiment.

The multispectral imager, which will be led by an ASU science team, will provide high-resolution images using filters to discriminate between Psyche's metallic and silicate constituents. It consists of a pair of identical cameras designed to acquire geologic, compositional and topographic data.

The Psyche mission spacecraft will include a multispectral imager, which will be led by an ASU science team and will provide high-resolution images using filters to differentiate between the asteroid's metallic and silicate components.

The gamma ray and neutron spectrometer will detect, measure and map Psyche's elemental composition. The instrument is mounted on a 7-foot (2-meter) boom to distance the sensors from background radiation created by energetic particles interacting with the spacecraft and to provide an unobstructed field of view. The science team for this instrument is based at the Applied Physics Laboratory at Johns Hopkins University.

The magnetometer, which is led by scientists at MIT and UCLA, is designed to detect and measure the remnant magnetic field of the asteroid. It's composed of two identical high-sensitivity magnetic field sensors located at the middle and outer end of the boom.

The Psyche spacecraft will also use an X-band radio telecommunications system, led by scientists at MIT and NASA's Jet Propulsion Laboratory. This instrument will measure Psyche's gravity field and, when combined with topography derived from onboard imagery, will provide information on the interior structure of the asteroid.

The Psyche mission team
In addition to Elkins-Tanton, ASU SESE scientists on the Psyche mission team include Jim Bell, deputy principal investigator and co-investigator, co-investigator Erik Asphaug, and co-investigator David Williams.

NASA's Jet Propulsion Laboratory managed by Caltech is the managing organization and will build the spacecraft with industry partner Space Systems Loral (SSL). JPL's contribution to the Psyche mission team includes over 75 people, led by project manager Henry Stone, project scientist Carol Polanskey, project systems engineer David Oh and deputy project manager Bob Mase. SSL contribution to the Psyche mission team includes over 50 people led by SEP Chassis deputy program manager Peter Lord and SEP Chassis program manager Steve Scott.

Other co-investigators are David Bercovici (Yale University), Bruce Bills (JPL), Richard Binzel (Massachusetts Institute of Technology), William Bottke (Southwest Research Institute - SwRI), Ralf Jaumann (Deutsches Zentrum fur Luft - und Raumfahrt), Insoo Jun (JPL), David Lawrence (Johns Hopkins University/Applied Physics Laboratory - APL), Simon Marchi (SwRI), Timothy McCoy (Smithsonian Institution), Ryan Park (JPL), Patrick Peplowski (APL), Thomas Prettyman, (Planetary Science Institute), Carol Raymond (JPL), Chris Russell (UCLA), Benjamin Weiss (MIT), Dan Wenkert (JPL), Mark Wieczorek (Institut de Physique du Globe de Paris), and Maria Zuber (MIT).


Comment on this article using your Disqus, Facebook, Google or Twitter login.

.


Related Links
Psyche Mission
Asteroid and Comet Mission News, Science and Technology






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
IRON AND ICE
PANIC Lander to Revolutionize Asteroid Research
Los Angeles CA (SPX) Dec 22, 2016
A US-German team of researchers has proposed to develop a micro-scale low-cost surface lander for the in situ characterization of an asteroid. The tiny spacecraft, called the Pico Autonomous Near-Earth Asteroid In Situ Characterizer (PANIC), could be a breakthrough for the scientific community, offering simple and cheap solutions for asteroid research. The concept of the PANIC mission envi ... read more


IRON AND ICE
Space station battery replacements to begin New Year's Eve

Launch of Russia's new progress spacecraft set for February 2

Tech show looks beyond 'smart,' to new 'realities'

'Passengers' and the real-life science of deep space travel

IRON AND ICE
SpaceX ready to launch again

Europe and Russia looking at Space Tug Project

India to develop large scale solid fuel mixer

Russia won't be leaving Baikonur anytime soon

IRON AND ICE
Odyssey recovering from precautionary pause in activity

3-D images reveal features of Martian polar ice caps

Small Troughs Growing on Mars May Become 'Spiders'

All eyes on Trump over Mars

IRON AND ICE
China Plans to Launch 1st Mars Probe by 2020 - State Council Information Office

China to expand int'l cooperation on space sciences

China sees rapid development of space science and technology

China Space Plan to Develop "Strength and Size"

IRON AND ICE
Airbus DS and Energia eye new medium-class satellite platform

OneWeb announces key funding form SoftBank Group and other investors

Space as a Driver for Socio-Economic Sustainable Development

SoftBank delivers first $1 bn of Trump pledge, to space firm

IRON AND ICE
Russian static discharge measure unit to prolong satellite equipment lifespan

'Just the first stage': unique 3D-printed Siberian satellite to orbit Earth

How to 3-D print your own sonic tractor beam

Saab, UAE sign radar support deal

IRON AND ICE
The blob can learn and teach

Searching a sea of 'noise' to find exoplanets - using only data as a guide

Microlensing Study Suggests Most Common Outer Planets Likely Neptune-mass

Exciting new creatures discovered on ocean floor

IRON AND ICE
Exploring Pluto and the Wild Back Yonder

Juno Captures Jupiter 'Pearl'

Juno Mission Prepares for December 11 Jupiter Flyby

Research Offers Clues About the Timing of Jupiter's Formation




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News








The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement