. 24/7 Space News .
TECH SPACE
Measuring Planck's constant, NIST's watt balance brings world closer to new kilogram
by Staff Writers
Washington DC (SPX) Jun 24, 2016


The NIST-4 watt balance has measured Planck's constant to within 34 parts per billion, demonstrating that the high-tech scale is accurate enough to assist with 2018's planned redefinition of the kilogram. Image courtesy J. L. Lee and NIST.

In a secure vault in the suburbs of Paris, an egg-sized cylinder of metal sits in a climate-controlled room under three glass bell jars. It is the mass against which all other masses in the world are measured - by definition the quintessential kilogram.

Yet the so-called "Le Grand K" may soon be deposed from the standard-setting throne it has held for the last 127 years. Efforts are afoot in the scientific community to define mass using a fundamental constant of nature instead - a value that in theory can be measured anywhere in the universe and won't change with the smude of a fingerprint or the settling of a fleck of dust.

"The problem with the kilogram in Paris is that it's so precious that people don't want to use it," said Stephan Schlamminger, a physicist at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland.

Schlamminger leads a team at NIST that has now reached an important milestone on the road to replacing the standard kilogram. The scientists have taken the first full set of measurements on a new machine, called the NIST-4, designed to measure a fundamental physical quantity called Planck's constant, or h. Planck's constant relates a quantum particle's frequency to its energy, which is turn can can be related to mass through Einstein's E=mc2.

NIST-4 is a watt balance, a high-tech scale that compares the weight of a mass to the electromagnetic force needed to balance it. The electromagnetic force - which is created by running current through a coil of wire suspended in a magnetic field - can then be used to calculate Planck's constant.

Before the world redefines the kilogram - an event currently scheduled for 2018 - multiple independent measurements of Planck's constant must agree with each other. NIST-4's first Planck's constant measurement likely meets this standard, Schlamminger said. The value, which the team reports in a paper in the journal Review of Scientific Instruments, matches with other experiments relatively well, and it has an uncertainty of only 34 parts per billion.

The team aims to get the uncertainty down to 20 parts per billion in the coming year, a goal they think they can reach by more precisely measuring how the current in the coil affects the magnetic field at the coil's location and by reducing the measurement noise.

The best watt balance measurement of Planck's constant so far comes from Canada's National Research Council, with an uncertainly of 19 parts per billion, Schlamminger said. A collaboration of scientists is also working on an alternative method for measuring h, which involves counting the atoms in an almost perfect sphere of silicon. The group has arrived at a value close to the watt balance numbers, and with an uncertainly of 20 parts per billion.

All the groups will have until July 2017 to publish new measurements of Planck's constant in order to be taken into account for the redefinition of the kilogram. The results will be fed into a computer program that will calculate a value of h that best fits all the data.

With the redefinition, h will become "fixed for all time," Schlamminger said, and the role of the watt balance will be flipped. Instead of using standard masses to measure Planck's constant, the watt balance will use the standard value of h to measure mass.

All the redefining should go on with little impact on the outside world. "It's the frustrating part about being a metrologist," Schlamminger said. "If you do your job right, nobody should notice."

Still, the undertaking is an impressive scientific feat that will make the kilogram more stable and accessible in the long run. The fact that NIST-4 is taking measurements in time for the kilogram redefinition is testament to the hard work and talent of his team, Schlamminger said. The machine, which is a successor to the NIST-3 watt balance, took just four years to build from scratch, a type of project that would usually take at least 10 years, Schlamminger noted.

And although NIST-4 will eventually displace chunks of metal as the U.S. standard for measuring mass, Schlamminger is sure "Le Grand K" will retain its mythical aura. "It's such a symbol and it has such a rich history of measurement. I don't think people will just throw it in the garbage," he said.

The article, "A precise instrument to determine the Planck constant, and the future kilogram," is authored by Darine Haddad, Frank Seifert, Leon Chao, Shisong Li, David Newell, Jon R. Pratt, Carl J. Williams and Stephan Schlamminger. It will be published in the journal Review of Scientific Instruments on June 21, 2016 (DOI: 10.1063/1.4953825).


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
American Institute of Physics
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Unveiling the distinctive features of a promising industrial microorganism
Daejeon, South Korea (SPX) Jun 22, 2016
Clostridium tyrobutyricum, a Gram-positive, anaerobic spore-forming bacterium, is considered a promising industrial host strain for the production of various chemicals including butyric acid which has many applications in different industries such as a precursor to biofuels. Despite such potential, C. tyrobutyricum has received little attention, mainly due to a limited understanding of its genot ... read more


TECH SPACE
Russian Moon Base to Hold Up to 12 People

US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

TECH SPACE
Curiosity rover analysis suggests Mars has oxygen-rich history

NASA Scientists Discover Unexpected Mineral on Mars

Hardware for Journey to Mars is a 'Big Catch'

Opportunity Wraps up Work on 'Wheel Scuff'

TECH SPACE
Blue Origin has fourth successful rocket booster landing

TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

TECH SPACE
United Nations and China agree to increased space cooperation

China's newest rocket ready for blast-off

China preparing for new era of space economy

China to send Chang'e-4 to south pole of moon's far-side

TECH SPACE
Down to Earth: Returned astronaut relishes little things

NASA Ignites Fire Experiment Aboard Space Cargo Ship

A Burial Plot for the International Space Station

Three astronauts touch down after 6 months in space

TECH SPACE
India launches 20 satellites in single mission

LSU Chemistry Experiment Aboard Historic Suborbital Space Flight

Spaceflight contracts India's PSLV to launch 12 Planet Dove nanosats

Purdue experiment aboard Blue Origin suborbital rocket a success

TECH SPACE
Newborn Planet Discovered Around Young Star

NASA's K2 Finds Newborn Exoplanet Around Young Star

"Electric Wind" Can Strip Earth-Like Planets of Oceans and Atmospheres

San Francisco State University astronomer helps discover giant planet orbiting 2 suns

TECH SPACE
Measuring Planck's constant, NIST's watt balance brings world closer to new kilogram

New antenna brings enhanced capabilities to the battlefield

Augmented reality helmet helps pilots see through clouds, fog

A new bio-ink for 3-D printing with stem cells









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.