Subscribe free to our newsletters via your
. 24/7 Space News .




WATER WORLD
Marine protected areas might not be enough to help overfished reefs recover
by Staff Writers
Atlanta GA (SPX) Aug 27, 2014


Researchers donned snorkels and examined three marine areas in Fiji that had adjacent fished areas. The country has established no-fishing areas to protect its healthy habitats and also to allow damaged reefs to recover over time. Image courtesy Danielle Dixson.

Pacific corals and fish can both smell a bad neighborhood, and use that ability to avoid settling in damaged reefs.

Damaged coral reefs emit chemical cues that repulse young coral and fish, discouraging them from settling in the degraded habitat, according to new research. The study shows for the first time that coral larvae can smell the difference between healthy and damaged reefs when they decide where to settle.

Coral reefs are declining around the world. Overfishing is one cause of coral collapse, depleting the herbivorous fish that remove the seaweed that sprouts in damaged reefs. Once seaweed takes hold of a reef, a tipping point can occur where coral growth is choked and new corals rarely settle.

The new study shows how chemical signals from seaweed repel young coral from settling in a seaweed-dominated area. Young fish were also not attracted to the smell of water from damaged reefs.

The findings suggest that designating overfished coral reefs as marine protected areas may not be enough to help these reefs recover because chemical signals continue to drive away new fish and coral long after overfishing has stopped.

"If you're setting up a marine protected area to seed recruitment into a degraded habitat, that recruitment may not happen if young fish and coral are not recognizing the degraded area as habitat," said Danielle Dixson, an assistant professor in the School of Biology at the Georgia Institute of Technology in Atlanta, and the study's first author.

The study was published in the journal Science. The research was sponsored by the National Science Foundation (NSF), the National Institutes of Health (NIH), and the Teasley Endowment to Georgia Tech.

The new study examined three marine areas in Fiji that had adjacent fished areas. The country has established no-fishing areas to protect its healthy habitats and also to allow damaged reefs to recover over time.

Juveniles of both corals and fishes were repelled by chemical cues from overfished, seaweed-dominated reefs but attracted to cues from coral-dominated areas where fishing is prohibited. Both coral and fish larvae preferred certain chemical cues from species of coral that are indicators of a healthy habitat, and they both avoided certain seaweeds that are indicators of a degraded habitat.

The study for the first time tested coral larvae in a method that has been used previously to test fish, and found that young coral have strong preferences for odors from healthy reefs.

"Not only are coral smelling good areas versus bad areas, but they're nuanced about it," said Mark Hay, a professor in the School of Biology at Georgia Tech and the study's senior author. "They're making careful decisions and can say, 'settle or don't settle.'"

The study showed that young fish have an overwhelming preference for water from healthy reefs. The researchers put water from healthy and degraded habitats into a flume that allowed fish to choose to swim in one stream of water or the other.

The researchers tested the preferences of 20 fish each from 15 different species and found that regardless of species, family or trophic group, each of the 15 species showed up to an eight times greater preference for water from healthy areas.

The researchers then tested coral larvae from three different species and found that they preferred water from the healthy habitat five-to-one over water from the degraded habitat.

Chemical cues from corals also swayed the fishes' preferences, the study found. The researchers soaked different corals in water and studied the behavior of fish in that water, which had picked up chemical cues from the corals. Cues of the common coral Acropora nasuta enhanced attraction to water from the degraded habitat by up to three times more for all 15 fishes tested. A similar preference was found among coral larvae.

Acropora corals easily bleach, are strongly affected by algal competition, and are prone to other stresses. The data demonstrate that chemical cues from these corals are attractive to fish and corals because they are found primarily in healthy habitats. Chemical cues from hardy corals, which can grow even in overfished habitats, were less attractive to juvenile fishes or corals.

The researchers also soaked seaweed in water and tested fish and coral preferences in that water.

Cues from the common seaweed Sargassum polycystum, which can bloom and take over a coral reef, reduced the attractiveness of water to fish by up to 86 percent compared to water without the seaweed chemical cues. Chemical cues from the seaweed decreased coral larval attraction by 81 percent.

"Corals avoided that smell more than even algae that's chemically toxic to coral but doesn't bloom," Dixson said.

Future work will involve removing plots of seaweed from damaged reefs and studying how that impacts reef recovery.

A minimum amount of intervention at the right time and the right place could jump start the recovery of overfished reefs, Hay said. That could bring fish back to the area so they settle and eat the seaweed around the corals. The corals would then get bigger because the seaweed is not overgrown. Bigger corals would then be more attractive to more fish.

"What this means is we probably need to manage these reefs in ways that help remove the most negative seaweeds and then help promote the most positive corals," Hay said.

Dixson et al., "Chemically mediated behavior of recruiting corals and fishes: A tipping point that may limit reef recovery." (August 2014, Science).

.


Related Links
Georgia Institute of Technology
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








WATER WORLD
Japan to propose 50% cut in young tuna catch
Tokyo (AFP) Aug 26, 2014
Japan plans to propose a 50 percent cut on catches of young bluefin tuna in the Western and Central Pacific, officials said Tuesday, in a historic shift aimed at safeguarding the at-risk species. Tokyo - the world's biggest consumer of tuna - has been reluctant to reduce catches, despite mounting scientific evidence that stocks are near collapse. But in what it called "an epochal move ... read more


WATER WORLD
Electric Sparks May Alter Evolution of Lunar Soil

China to test recoverable moon orbiter

China to send orbiter to moon and back

August supermoon will be brightest this year

WATER WORLD
Mars Rover Team Chooses Not to Drill 'Bonanza King'

Indian orbiter to reach Mars in 33 days

Mars thigh bone is really just a rock spotted by Curiosity

Curiosity's Brushwork on Martian 'Bonanza King' Target

WATER WORLD
Long-term spaceflights challenged as harm to astronauts' health revealed

Voyager Map Details Neptune's Strange Moon Triton

NASA Selects 26 Space Biology Research Proposals

China to spend $1-bn. on massive Caribbean resort

WATER WORLD
China Sends Remote-Sensing Satellite into Orbit

More Tasks for China's Moon Mission

China's Circumlunar Spacecraft Unmasked

China to launch HD observation satellite this year

WATER WORLD
NASA Awaits Boeing's Completion of Soyuz Replacement

Belka and Strelka, the canine cosmonauts

Russian Cosmonauts Conclude EVA Ahead of Schedule

Orbital cargo ship makes planned re-entry to Earth

WATER WORLD
Sea Launch Takes Proactive Steps to Address Manifest Gap

SpaceX rocket explodes during test flight

Russian Cosmonauts Carry Out Science-Oriented Spacewalk Outside ISS

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

WATER WORLD
Rotation of Planets Influences Habitability

Planet-like object may have spent its youth as hot as a star

Young binary star system may form planets with weird and wild orbits

Hubble Finds Three Surprisingly Dry Exoplanets

WATER WORLD
Photon speedway puts big data in the fast lane

The fluorescent fingerprint of plastics

Atoms to Product: Aiming to Make Nanoscale Benefits Life-sized

Yale's cool molecules




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.