Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Magnetic 'Force Field' Shields Giant Gas Cloud during Collision with Milky Way
by Staff Writers
Charlottesville VA (SPX) Nov 01, 2013


Artist's impression of the Smith Cloud's plunge into the disk of the Milky Way, which it's destined to hit in approximately 30 million years. The cloud, seen in orange and yellow at bottom of the image, is actual data from the Robert C. Byrd Green Bank Telescope (GBT). Credit: Bill Saxton (NRAO/AUI/NSF).

Doom may be averted for the Smith Cloud, a gigantic streamer of hydrogen gas that is on a collision course with the Milky Way Galaxy. Astronomers using the National Science Foundation's Karl G. Jansky Very Large Array (VLA) and Robert C. Byrd Green Bank Telescope (GBT) have discovered a magnetic field deep in the cloud's interior, which may protect it during its meteoric plunge into the disk of our Galaxy.

This discovery could help explain how so-called high velocity clouds (HVCs) remain mostly intact during their mergers with the disks of galaxies, where they would provide fresh fuel for a new generation of stars.

Currently, the Smith Cloud is hurtling toward the Milky Way at more than 150 miles per second and is predicted to impact in approximately 30 million years. When it does, astronomers believe, it will set off a spectacular burst of star formation. But first, it has to survive careening through the halo, or atmosphere, of hot ionized gas surrounding the Milky Way.

"The million-degree upper atmosphere of the Galaxy ought to destroy these hydrogen clouds before they ever reach the disk, where most stars are formed," said Alex Hill, an astronomer at Australia's Commonwealth Scientific and Industrial Research Organization (CSIRO) and lead author of a paper published in the Astrophysical Journal.

"New observations reveal one of these clouds in the process of being shredded, but a protective magnetic field shields the cloud and may help it survive its plunge."

Many hundreds of HVCs zip around our Galaxy, but their obits seldom correspond to the rotation of the Milky Way. This leads astronomers to believe that HVCs are the left-over building blocks of galaxy formation or the splattered remains of a close galactic encounter billions of years ago.

Though massive, the gas that makes up HVCs is very tenuous, and computer simulations predict that they lack the necessary heft to survive plunging through the halo and into the disk of the Milky Way.

"We have long had trouble understanding how HVCs reach the Galactic disk," said Hill. "There's good reason to believe that magnetic fields can prevent their 'burning up' in the halo like a meteorite burning up in Earth's atmosphere."

Despite being the best evidence yet for a magnetic field inside an HVC, the origin of the Smith Cloud's field remains a mystery. "The field we observe now is too large to have existed in its current state when the cloud was formed," said Hill. "The field was probably magnified by the cloud's motion through the halo."

Earlier research indicates the Smith Cloud has already survived punching through the disk of our Galaxy once and - at about 8,000 light-years from the disk - is just beginning its re-entry now.

"The Smith Cloud is unique among high-velocity clouds because it is so clearly interacting with and merging with the Milky Way," said Felix J. Lockman, an astronomer at the National Radio Astronomy Observatory (NRAO) in Green Bank, W.Va. "Its comet-like appearance indicates it's already feeling the Milky Way's influence."

Since the Smith Cloud appears to be devoid of stars, the only way to observe it is with exquisitely sensitive radio telescopes, like the GBT, which can detect the faint emission of neutral hydrogen. If it were visible with the naked eye, the Smith Cloud would cover almost as much sky as the constellation Orion.

When the Smith Cloud eventually merges with the Milky Way, it could produce a bright ring of stars similar to the one relatively close to our Sun known as Gould's Belt.

"Our Galaxy is in an incredibly dynamic environment," concludes Hill, "and how it interacts with that environment determines whether stars like the Sun will continue to form."

.


Related Links
National Radio Astronomy Observatory
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Yes, There is Activity in the Darkness of Space
White Sands Missile Range NM (SPX) Nov 01, 2013
Looking up at the night sky one sees only the darkness between the stars. An area void of activity? Not exactly. This area between the star systems in our galaxy, also known as the interstellar medium, is populated with dust and hot gas. This gas is thought to have a role in planetary and solar system formation. On November 1 NASA will launch a Black Brant IX sounding rocket carrying the X ... read more


STELLAR CHEMISTRY
Crowdfunded Lunar Spacecraft Reaches Funding Milestone

LADEE Continues To Settle Into Operational Lunar Orbit

NASA's moon landing remembered as a promise of a 'future which never happened'

Russia could build manned lunar base

STELLAR CHEMISTRY
Martian box of delights

Students crash rockets into the ground to test sample return proposal

Seeking the Sun's Rays as Winter Approaches

India Prepares for Mars Mission

STELLAR CHEMISTRY
NASA's Orion Spacecraft Comes to Life

Flights of Fancy

NewSpace Business Plan Competition 2013 Winners Announced

NASA Engages the Public to Discover New Uses for Out-of-this-World Technologies

STELLAR CHEMISTRY
China providing space training

China launches experimental satellite Shijian-16

China Moon Rover A New Opportunity To Explore Our Nearest Neighbor

Is China Challenging Space Security

STELLAR CHEMISTRY
Soyuz changes parking spots at space station, making way for new crew

ATV-4: all good missions must come to an end

European cargo freighter undocks from ISS

European cargo freighter to undock from ISS

STELLAR CHEMISTRY
ILS Proton Launches Sirius FM-6 Satellite

Boeing Finalizes Agreement for Kennedy Space Center Facility

Russia Plans to Spend $22M on Soyuz-2 Launch Pad

Ariane 5 arrives at the Spaceport's Final Assembly Building for payload installation

STELLAR CHEMISTRY
Mystery World Baffles Astronomers

Researchers discover that an exoplanet is Earth-like in mass and size

'Hellish' exoplanet has Earth-like mass: research

Carbon Worlds May be Waterless

STELLAR CHEMISTRY
Historic Demonstration Proves Laser Communication Possible

UNC neuroscientists discover new 'mini-neural computer' in the brain

Birthing a new breed of materials

Unique chemistry in hydrogen catalysts




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement