. 24/7 Space News .
EARTH OBSERVATION
MOF material offers selective, reversible and repeatable capture of toxic atmospheric gas
by Staff Writers
Oak Ridge TN (SPX) Jun 18, 2018

Illustration of a nitrogen dioxide molecule (depicted in red and gold) confined within a nano-size pore of an MFM-300(Al) metal-organic framework material as characterized using neutron scattering at Oak Ridge National Laboratory.

Led by the University of Manchester, an international team of scientists has developed a metal-organic framework material (MOF) that exhibits a selective, fully reversible and repeatable capability to remove nitrogen dioxide gas from the atmosphere in ambient conditions.

This discovery, confirmed by researchers using neutron scattering at the Department of Energy's Oak Ridge National Laboratory, could lead to air filtration technologies that cost-effectively capture and convert large quantities of targeted gases, including carbon dioxide and other greenhouse gases, to facilitate their long-term sequestration to help mitigate air pollution and global warming.

As reported in Nature Materials, the material denoted as MFM-300(Al) exhibited the first reversible, selective capture of nitrogen dioxide at ambient pressures and temperatures - at low concentrations - in the presence of moisture, sulfur dioxide and carbon dioxide. Despite the highly reactive nature of nitrogen dioxide, the MFM-300(Al) material proved extremely robust, demonstrating the capability to be fully regenerated, or degassed, multiple times without loss of crystallinity or porosity.

"This material is the first example of a metal-organic framework that exhibits a highly selective and fully reversible capability for repeated separation of nitrogen dioxide from the air, even in presence of water," said Sihai Yang, one of the study's lead authors and a lecturer in inorganic chemistry at Manchester's School of Chemistry.

Professor Martin Schroder, another lead author from Manchester Chemistry, commented, "Other studies of different porous materials often found performance was degraded in subsequent cycles by the nitrogen dioxide, or that the regeneration process was too difficult and costly."

As part of the research, the scientists used neutron scattering techniques at the Department of Energy's Oak Ridge National Laboratory to confirm and precisely characterize how MFM-300(Al) captures nitrogen dioxide molecules.

"Neutrons can easily penetrate dense materials and they are sensitive to lighter elements, such as the hydrogen atoms inside the MFM, which enabled us to observe how the nitrogen dioxide molecules are confined within the nano-size pores," said Timmy Ramirez-Cuesta, a co-author and coordinator for the chemistry and catalysis initiative at ORNL's Neutron Sciences Directorate.

"We benefitted from the extremely high sensitivity and quantitative data provided by the VISION vibrational spectroscopy instrument on ORNL's 16-B beamline at the Spallation Neutron Source, which uses neutrons instead of photons to probe molecular vibrations."

The ability to directly observe how and where MFM-300(Al) traps nitrogen dioxide is helping the researchers validate a computer model of the MOF gas separation process, which could help identify how to produce and tailor other materials to capture a variety of different gases.

"Computer modeling and simulation played critical roles in interpreting the neutron scattering data by helping us connect subtle changes in the vibrational spectra to interactions between the MFM-300 and trapped molecules," said Yongqiang Cheng, an ORNL neutron scattering scientist and co-author. "Our goal is to integrate the model with experimental techniques to deliver results that are otherwise difficult to achieve."

Capturing greenhouse and toxic gases from the atmosphere has long been a challenge, because of their relatively low concentrations and the presence of moisture in the air, which can negatively affect separating targeted gas molecules from other gases. Another challenge has been finding a practical way to release a captured gas for long-term sequestration, such as in underground depleted oil reservoirs or saline-filled rock formations. MOFs offer solutions to many of these challenges, which is why they are the subject of recent scientific investigations.

The research team involved scientists from institutions in five nations, including the University of Nottingham, University of Newcastle upon Tyne, University of Nottingham Ningbo China, Peking University, the International Tomography Center SB RAS, Novosibirsk State University, and the European Synchrotron Radiation Facility in Grenoble.

Research Report: "Reversible adsorption of nitrogen dioxide within a robust porous metal-organic framework"


Related Links
Oak Ridge National Laboratory
Earth Observation News - Suppiliers, Technology and Application


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARTH OBSERVATION
Ammonia distribution in Earth's upper atmosphere explained
Ames IA (SPX) Jun 15, 2018
A new study co-led by University of Iowa researchers explains how ammonia is distributed in Earth's upper atmosphere. The study authors used computer modeling to determine that ammonia is eventually released as a gas into the upper atmosphere. The modeling explains a mystery - data gathered by satellites that shows plumes of ammonia in the upper atmosphere, especially over parts of Asia during the summer monsoon season. The research is important because it answers on a molecular scale how am ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARTH OBSERVATION
NASA astronauts install high-def cameras during spacewalk

ECOSTRESS among science payloads on next ISS mission

Possible launch date of Russia's Nauka module to ISS

Second Space Station mission for Alexander Gerst begins

EARTH OBSERVATION
Sample Return Technology Successfully Tested on Xodiac Rocket

Japan successfully tests H-IIA launch vehicle with new research satellite

Girls' Rocketry Challenge team wins three awards at national model rocketry competition

US Senate introduces measure to upgrade defense against hypersonic threats

EARTH OBSERVATION
NASA spacecraft studying massive Martian dust storm

Opportunity rover sends transmission amid Martian dust storm

NASA encounters the perfect storm for science on Mars

Martian dust storm silences NASA's rover, Opportunity

EARTH OBSERVATION
China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

Beijing welcomes use of Chinese space station by all UN Nations

China upgrades spacecraft reentry and descent technology

EARTH OBSERVATION
US FCC expands market access for SES O3b MEO constellation

Liftoff as Alexander Gerst returns to space

Lockheed Martin Announces $100 Million Venture Fund Increase

Iridium Continues to Attract World Class Maritime Service Providers for Iridium CertusS

EARTH OBSERVATION
Dutch software makes supercomputer from laptop

Ground-breaking discoveries could create superior alloys with many applications

Scientists predict a new superhard material with unique properties

Modern alchemists are making chemistry greener

EARTH OBSERVATION
Chandra Scouts Nearest Star System for Possible Hazards

Researchers discover a system with three Earth-sized planets

Researchers discover multiple alkali metals in unique exoplanet

The Clarke exobelt, a method to search for possible extraterrestrial civilizations

EARTH OBSERVATION
NASA shares more Pluto images from New Horizons

Juno Solves 39-Year Old Mystery of Jupiter Lightning

NASA Re-plans Juno's Jupiter Mission

New Horizons Wakes for Historic Kuiper Belt Flyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.