Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




CHIP TECH
Low-power tunneling transistor for high-performance devices at low voltage
by Staff Writers
Philadelphia PA(SPX) Dec 22, 2013


This is a scanning electron microscope top view of the TFET. Credit: Suman Datta/Penn State.

A new type of transistor that could make possible fast and low-power computing devices for energy-constrained applications such as smart sensor networks, implantable medical electronics and ultra-mobile computing is feasible, according to Penn State researchers. Called a near broken-gap tunnel field effect transistor (TFET), the new device uses the quantum mechanical tunneling of electrons through an ultrathin energy barrier to provide high current at low voltage.

Penn State, the National Institute of Standards and Technology and IQE, a specialty wafer manufacturer, jointly presented their findings at the International Electron Devices Meeting in Washington, D.C. The IEDM meeting includes representatives from all of the major chip companies and is the recognized forum for reporting breakthroughs in semiconductor and electronic technologies.

Tunnel field effect transistors are considered to be a potential replacement for current CMOS transistors, as device makers search for a way to continue shrinking the size of transistors and packing more transistors into a given area. The main challenge facing current chip technology is that as size decreases, the power required to operate transistors does not decrease in step.

The results can be seen in batteries that drain faster and increasing heat dissipation that can damage delicate electronic circuits. Various new types of transistor architecture using materials other than the standard silicon are being studied to overcome the power consumption challenge.

"This transistor has previously been developed in our lab to replace MOSFET transistors for logic applications and to address power issues," said lead author and Penn State graduate student Bijesh Rajamohanan.

"In this work we went a step beyond and showed the capability of operating at high frequency, which is handy for applications where power concerns are critical, such as processing and transmitting information from devices implanted inside the human body."

For implanted devices, generating too much power and heat can damage the tissue that is being monitored, while draining the battery requires frequent replacement surgery.

The researchers, led by Suman Datta, professor of electrical engineering, tuned the material composition of the indium gallium arsenide/gallium arsenide antimony so that the energy barrier was close to zero -- or near broken gap, which allowed electrons to tunnel through the barrier when desired.

To improve amplification, the researchers moved all the contacts to the same plane at the top surface of the vertical transistor.

This device was developed as part of a larger program sponsored by the National Science Foundation through the Nanosystems Engineering Research Center for Advanced Self-Powered Systems of Integrated Sensors and Technologies (NERC-ASSIST).

The broader goal of the ASSIST program is to develop battery-free, body-powered wearable health monitoring systems with Penn State, North Carolina State University, University of Virginia, and Florida International University as participating institutions.

The paper, "Demonstration of InGaAs/GaAsSb Near Broken-gap Tunnel FET with Ion=740uA/um, GM=700uS/um and Gigahertz Switching Performance at VDS=0.5V," will be available in the conference proceedings publication of the IEDM.

.


Related Links
Penn State
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CHIP TECH
Bio-inspired method to grow high-quality graphene for high-end electronic devices
Singapore (SPX) Dec 17, 2013
A team of researchers from the National University of Singapore (NUS), led by Professor Loh Kian Ping, who heads the Department of Chemistry at the NUS Faculty of Science, has successfully developed an innovative one-step method to grow and transfer high-quality graphene on silicon and other stiff substrates, opening up opportunities for graphene to be used in high-value applications that are cu ... read more


CHIP TECH
NASA Releases New Earthrise Simulation Video

Most Chang'e-3 science tools activated

China's Lunar Lander May Provide Additional Science for NASA Spacecraft

China plans to launch Chang'e-5 in 2017

CHIP TECH
Curiosity Team Upgrades Software, Checks Wheel Wear

Opportunity Communications Remain Slow Due To Odyssey Issues

New Views of Mars from Sediment Mineralogy

NASA poised to launch Mars atmosphere probe

CHIP TECH
Sierra Nevada Completes CCDev2, Begins Dream Chaser Flight Test Program

Russia's Putin pledges $1.5 billion for basic science research

Asia's year in space triggers applause but also worry

NASA's network for talking to space missions nears 50th anniversary

CHIP TECH
China's moon rover continues lunar survey after photographing lander

China's Yutu "naps", awakens and explores

Deep space monitoring station abroad imperative

Chinese sci-fi writers laud moon landing

CHIP TECH
Astronauts remove faulty ammonia pump during first spacewalk after ISS coolant system goes wrong

No early Christmas? Spacesuit issue delays second spacewalk to fix ISS cooling system

Spacesuit flaw postpones station repairs to Dec 24

NASA and Russia prolong contract on Soyuz taxi flights to ISS

CHIP TECH
Orbital Launches Completes 40th Consecutive Successful Suborbital Rocket For NASA

Argentina successfully launches research rocket

Gaia secured inside fairing

India to decide December 27 on GSAT-14 launch date

CHIP TECH
Gaia Mission Could Help Map Exoplanets

First detection of a predicted unseen exoplanet

Astronomers solve temperature mystery of planetary atmospheres

Nearby failed stars may harbor planet

CHIP TECH
Europe's Gaia telescope detaches from Fregat-MT upper stage

Sailing satellites into safe retirement

Researchers Design First Battery-Powered Invisibility Cloaking Device

'Macrocells' influence corrosion rate of submerged marine concrete structures




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement