. 24/7 Space News .
TIME AND SPACE
Lithium in ancient star gives new clues for big bang nucleosynthesis
by Staff Writers
La Palma, Spain (SPX) Apr 18, 2019

ISIS spectrum of J0023+0307, and J1029+1729, one of the most metal-poor stars known and shown for comparison. In red, the best model fit. Figure taken from Aguado et al., 2018.

Researchers from the Instituto de Astrofisica de Canarias (Spain) and the University of Cambridge (UK) have detected lithium (Li) in the ancient star J0023+0307, a main-sequence extremely iron-poor dwarf star about 9,450 light-years away in the galactic halo.

The study of the most ancient stars in the Milky Way allows us to infer the early properties of the galaxy, its chemical composition, and its assembly history. Metal-poor stars are invaluable messengers that carry information from early epochs, and are an important key to understand the primordial production of Li and the processes responsible for the possible "meltdown" of the Li plateau (a typical Li abundance of a metal-poor dwarf star which is related to the primordial lithium abundance).

All stars with low metallicities and low Li abundances, significantly below A(Li)~2.2, are considered to have been likely affected by destruction of the Li in the stars.

New or poorly measured nuclear reaction resonances could affect the Li production predicted by standard big bang nucleosynthesis (SBBN). Processes injecting neutrons at the relevant temperatures of the primordial plasma can also alter the primordial Li abundance. In addition, time-varying fundamental constants may lead to a significant Li lower value.

Li observations in stars at the lowest metallicities are especially important to bring an insight into the processes of potential Li depletion in stars and, ultimately, to establish if any non-standard physics may have played a role during or after SBBN.

Stars that formed in the first or second generation are extremely rare objects, and only a few are known. The lack of metals in the gas available in the mini-halos, where the first stars formed, limits radiative cooling, increasing the Jeans mass and shifting the initial mass function to large masses, to the point that perhaps no low-mass stars were formed in the first generation.

This picture has been challenged in recent years by the discovery of low-mass stars which show extremely low metallicity and low carbon and nitrogen abundances, suggesting that low-mass stars can form even at such low metallicities.

A year ago, astronomers using the ISIS spectrograph at the William Herschel Telescope (WHT) discovered the star J0023+0307, one of the most metal-poor stars known, with about a million times less iron than the Sun. J0023+0307 also shows very little carbon, an important element for the formation of low-mass stars in the low metallicity regime.

New data obtained using UVES, a high-resolution spectrograph at the Very Large Telescope (VLT) in Paranal Observatory (Chile), revealed a Li abundance with values consistent with the extended Li plateau at these low metallicities. However, the predicted Li abundance from the SBBN theory remains a factor of 3 higher than that of the Li plateau.

The presence of Li in this extremely iron-poor star has implications for the production of Li at the Big Bang, and strongly constrains any theory aiming at explaining the cosmological Li problem.

The fact that no star in this large low-metallicity regime has been detected showing a Li abundance between that inferred from SBBN and the Li plateau, makes this upper boundary of Li abundance at low metallicities difficult to explain by destruction in the stars, and may support a lower primordial Li production, driven by non-standard nucleosynthesis processes.

Research Reports: * D. S. Aguado, J. I. Gonzalez Hernandez, C. Allende Prieto, R. Rebolo, 2019, "Back to the Lithium Plateau with the [Fe/H] -6 Star J0023+0307," and * D. S. Aguado, C. Allende Prieto, J. I. Gonzalez Hernandez, 2018, "J0023+0307: A Mega Metal-Poor Dwarf Star from SDSS/BOSS,"
Related Links
Isaac Newton Group of Telescopes
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Journey to the Big Bang via Lithium of a Milky Way Star
Tenerife, Spain (SPX) Apr 08, 2019
Researchers at the Instituto de Astrofisica de Canarias (IAC) and the University of Cambridge have detected lithium in a primitive star in our galaxy. The observations were made at the VLT, at the Paranal Observatory of ESO in Chile. In astrophysics, any element heavier than hydrogen and helium is termed "metal" and lithium is among the lightest of these metals. Researchers at the IAC and the University of Cambridge have been able to detect lithium in a "primitive" star. This is the star J0023+030 ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Music for space

US Astronauts Have 15 Minutes to Evacuate to Russian Part of ISS If NH3 Leaks

Asteroids help scientists measure distant stars

Asteroids Help Scientists Measure Diameters of Faraway Stars

TIME AND SPACE
SpaceX loses Falcon Heavy rocket center core booster in Atlantic

Sea Launch venture may be moved from US to Russia's Far East

NASA accelerates pace of Core Stage production with new tool

NASA Takes Advantage of Innovative 3-D Printing Process for SLS Rocket

TIME AND SPACE
ExoMars carrier module prepares for final pre-launch testing

First results from the ExoMars Trace Gas Orbiter

Curiosity Tastes First Sample in 'Clay-Bearing Unit'

Tests for the InSight 'Mole'

TIME AND SPACE
China's commercial carrier rocket finishes engine test

China launches new data relay satellite

Super-powerful Long March 9 said to begin missions around 2030

China preparing for space station missions

TIME AND SPACE
ESA opening up to new ideas

Spacecraft Repo Operations

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

Forging the future

TIME AND SPACE
When debris overwhelms space exploitation

India's ASAT 'Justified'

ESA oversees teaching of Europe's next top solderers

Rocket break-up provides rare chance to test debris formation

TIME AND SPACE
Astronomers discover third planet in the Kepler-47 circumbinary system

Powerful particles and tugging tides may affect extraterrestrial life

Oil-eating bacteria found at the bottom of the ocean

TESS discovers its first Earth-sized planet

TIME AND SPACE
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.