. 24/7 Space News .
EXO LIFE
Life's origins may result from low-energy electron reactions in space
by Staff Writers
Wellesley MA (SPX) Jun 16, 2016


The interaction of high-energy cosmic rays with matter produces copious numbers of low-energy electrons. Arumainayagam's results demonstrate that low-energy electron and UV irradiation of methanol ices yield essentially the same reaction products.

Wellesley College professor Chris Arumainayagam has opened the American Astronomical Society (AAS) national conference in San Diego, Calif with a discussion about how the earliest building blocks of life may have been produced when low-energy (< 20 eV) electrons interact with cosmic (interstellar, planetary, and cometary) ices.

His recently published results suggest that low-energy, electron-induced condensed phase reactions may contribute to the interstellar synthesis of prebiotic molecules previously thought to form exclusively via UV photons.

In the simplest possible terms, his work is consistent with the idea that we really do come from stardust and is relevant to the first unambiguous detection of glycine in a comet, reported in May 2016. Arumainayagam is the only professor representing a liberal arts college at the press briefing.

The goal of the research is to understand the "chemistry of the heavens" by recreating what happens in interstellar space when high-energy cosmic rays (some with energies much higher than could be produced by the Large Hadron Collider) impact ices (containing water, methanol, and ammonia) surrounding micron-size dust grains in dark dense molecular clouds, where the pressure is ten trillion times lower than that of atmospheric pressure.

The interaction of high-energy cosmic rays with matter produces copious numbers of low-energy electrons. Arumainayagam's results demonstrate that low-energy electron and UV irradiation of methanol ices yield essentially the same reaction products.

However, his studies to date have also identified one possible electron-induced cosmic ice chemistry tracer, methoxymethanol, a "complex" organic molecule not identified in UV laboratory photolysis studies of condensed methanol. Future astronomical identification of methoxymethanol within interstellar and/or circumstellar clouds could provide additional evidence for the role of low-energy electrons in astrochemistry. His findings illustrate an urgent need for astrochemical models to include the details of low-energy electron-induced reactions in addition to those driven by UV photons.

Jyoti Campbell, a Wellesley College sophomore, will give an oral presentation at the conference entitled "The Role of Low-Energy Electrons in Astrochemistry: A Tale of Two Molecules." Campbell has had access to a caliber of technology and equipment rarely available to undergraduates. To attend the conference, she will be taking a break from her summer work at the Jet Propulsion Lab (NASA).

Arumainayagam's research has been supported by grants from the National Science Foundation, American Chemical Society, Research Corporation, and the Camille and Henry Dreyfus Foundation. The majority of his research is done entirely at Wellesley College with undergraduate students using a state-of the-art ultrahigh vacuum (UHV) chamber, which incorporates many custom-built components. He is currently upgrading his UHV chamber to explore fundamental differences between chemical reactions initiated by photons and electrons.

Research paper: "The role of low-energy (= 20 eV) electrons in astrochemistry"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wellesley College
Life Beyond Earth
Lands Beyond Beyond - extra solar planets - news and science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EXO LIFE
Universe's first life might have been born on carbon planets
Boston MA (SPX) Jun 09, 2016
Our Earth consists of silicate rocks and an iron core with a thin veneer of water and life. But the first potentially habitable worlds to form might have been very different. New research suggests that planet formation in the early universe might have created carbon planets consisting of graphite, carbides, and diamond. Astronomers might find these diamond worlds by searching a rare class of sta ... read more


EXO LIFE
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

EXO LIFE
Musk explains his 'cargo route' to Mars

Remarkably diverse flora in Utah, USA, trains scientists for future missions on Mars

NASA Mars Orbiters Reveal Seasonal Dust Storm Pattern

Study of Opportunity Wheel Scuff Continues

EXO LIFE
TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

EXO LIFE
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

EXO LIFE
Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

EXO LIFE
MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

US Senate reaches compromise on Russian rocket engines

EXO LIFE
New planet is largest discovered that orbits 2 suns

Cloudy Days on Exoplanets May Hide Atmospheric Water

Likely new planet may be in slow death spiral

On exoplanets, atmospheric water may be hiding behind clouds

EXO LIFE
Fighting virtual reality sickness

Cereal science: How scientists inverted the Cheerios effect

Can computers do magic?

New maths accurately captures liquids and surfaces moving in synergy









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.