. 24/7 Space News .
SPACE TRAVEL
Life-saving NASA Communications System Turns 20
by Ashley Hume for GSFC News
Greenbelt MD (SPX) Jan 10, 2018


TDRS could provide a much higher data rate than the previous satellites NSF used, meaning more data could be sent at a time. The TDRS system also had multiple systems in place for communications, meaning there were backup options in case any of the systems failed. To make TDRS work for the South Pole's needs, NASA built a communications antenna at the South Pole station and added a new system at White Sands Complex in New Mexico, where the TDRS operations center is housed, to provide this new type of support.

NASA's Tracking and Data Relay Satellites (TDRS) don't just enable data from spacecraft to reach Earth - they provide internet and even telemedicine to researchers at the South Pole. The South Pole TDRS Relay (SPTR) system turns 20 years old on Jan. 9, 2018.

In the 1990s, the National Science Foundation (NSF) faced a communications challenge with more than a hundred scientists working at their Amundsen-Scott South Pole Station in Antarctica per year to study everything from meteorology to astrophysics to climate. The scientists were completely isolated at the remote station during the winter months from about mid-February to late October every year.

Airplanes could not land to transport people or data, in the form of tapes, off Antarctica. Researchers were limited in how they could communicate, relying mostly on high-frequency radio to connect with the outside world or send their research back to the U.S., and it was difficult to do in a timely manner.

Additionally, polar-orbiting satellites used the South Pole Satellite Data Link (SPSDL) to move low volumes of survey mapping data to McMurdo Station, but the flow of data back to the U.S. was nearly impossible with the existing communications systems.

NSF's Pat Smith, technology development manager for the Office of Polar Programs, turned to satellites in high-altitude, high-inclination orbits to solve the problem. Inclination is the angle of an orbit in relation to Earth's equator, which has zero inclination.

The higher the satellite, the smaller the angle needed to provide useful communications. Together with a team at NASA's Goddard Space Flight Center in Greenbelt, Maryland, he developed a way to use satellites in geosynchronous orbits (about 22,000 miles above the Earth's surface) that were past their primary missions to provide internet connectivity and file transfer services to the South Pole.

Smith and another team of experts began by adapting older weather satellites and experimental satellites to provide communications services, which gave Antarctica the equivalent of a dial-up connection. However, as data collection continued to become more sophisticated, they needed to transmit and receive more data at a time. In the early 1990s, the team gained access to newer spacecraft, which enabled much better communications to and from the South Pole, but the data rates were still low and services were limited.

That's when Smith heard about TDRS, which were designed to provide communications services to spacecraft. He began working with Mike "NASA Mike" Comberiate from Goddard to determine if the NSF could get access to those resources from a remote location on Earth.

TDRS could provide a much higher data rate than the previous satellites NSF used, meaning more data could be sent at a time. The TDRS system also had multiple systems in place for communications, meaning there were backup options in case any of the systems failed. To make TDRS work for the South Pole's needs, NASA built a communications antenna at the South Pole station and added a new system at White Sands Complex in New Mexico, where the TDRS operations center is housed, to provide this new type of support.

The first signal was sent via the South Pole TDRS Relay system on Dec. 12, 1997, and the system officially became operational on Jan. 9, 1998.

"Given the power of the TDRS satellites, we were able get, out of a little 6-foot antenna, data rates that we could previously only get a fraction of with a big 9-meter antenna," said Smith. A 9-meter antenna equates to about 30 feet, or five times the size of a 6-foot antenna.

Over the next several years, the system was used for numerous purposes besides providing general connectivity to the South Pole. In June 1999, the South Pole TDRS Relay played a critical role in providing telemedicine from the U.S. to the station's physician, Jerri Nielson, who had discovered she had breast cancer while isolated at the South Pole station during the winter. They helped her perform a self-biopsy and administer chemotherapy, saving her life. Doctors leveraged the system for telemedicine again in 2002 to assist in knee surgery for meteorologist Dar Gibson.

Additionally, the system supported news events from the South Pole in the late 1990s and early 2000s, including a live New Year's Eve broadcast from the South Pole in 2000.

"It's hard to enumerate all the current systems that this was the pathfinder for," said Comberiate.

"The SPTR system was so far ahead of everything else back then that it was unimaginable."

The system was a game-changer not just for connectivity from the South Pole, but for communications in many remote locations. The use of TDRS for internet connectivity evolved from the South Pole to other ground and ship-based systems for remote science webcasts, such as for eclipses in remote locations. TDRS not only provided data services for these activities, but demonstrated the potential for the use of internet technology to support NASA missions.

This culminated in an experiment, named the Low Power Transceiver Communications and Navigation Demonstration on Shuttle (LPT CANDOS), on the STS-107 space shuttle mission in 2003. LPT CANDOS provided network connectivity to the payload bay of the space shuttle using the same TDRS equipment developed initially for SPTR.

Since that time, the ability to use general internet has been added to the International Space Station and the Orion spacecraft. Future exploration and science missions will use a combination of IP and disruption-tolerant networking (DTN) as part of a solar system internet.

Over time, the SPTR system has changed and evolved. The original NASA equipment was replaced with upgraded NSF equipment, which was named SPTR-2 and became operational in June 2009. The SPTR-2 antenna has access to any TDRS spacecraft in view and can also relay science data through the Geostationary Operational Environmental Satellite (GOES) network in between TDRS visibility windows. GOES satellites use a different communications system to communicate than TDRS.

Every year, researchers develop instruments that collect even more data at a time and require higher data rates to stay in the forefront of their scientific fields. Astrophysicists working on cosmic background research at the South Pole station expect to collect as much as 300 megabits of data per day in the next few years, so SPTR must continue to evolve with these growing needs.

The National Science Foundation (NSF) funds and manages the U.S. Antarctic Program (USAP), which has three, year-round remote research stations in Antarctica. This partnership between NASA and NSF commissioned a first-of-its-kind satellite communications ground terminal at the NSF Amundsen-Scott South Pole Station. The South Pole TDRS Relay (SPTR) ground terminal was the genesis of what is today an important data communications link moving high volumes of scientific research data daily from NSF-funded astronomy and astrophysics programs.

The partnership for communications, now in its 20th year, continues with long-term TDRS access, enabling science discoveries at the frontiers of astronomy and astrophysics, supporting the operations of Amundsen-Scott South Pole Station and providing the important connections to family and friends for the isolated scientists and crew.

+ For more information about NASA's space communications networks, visit here

+ For more information about TDRS, visit here

+ For more information on USAP, visit here

SPACE TRAVEL
NASA Deep Space Exploration Systems looks ahead to action-packed 2018
Kennedy Space Center FL (SPX) Jan 09, 2018
Engineers preparing NASA's deep space exploration systems to support missions to the Moon, Mars, and beyond are gearing up for a busy 2018. The agency aims to complete the manufacturing of all the major hardware by the end of the year for Exploration Mission-1 (EM-1), which will pave the road for future missions with astronauts. Planes, trains, trucks and ships will move across America and ... read more

Related Links
Space Communications at NASA
Space Tourism, Space Transport and Space Exploration News


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SPACE TRAVEL
'To boldly grow': Japan astronaut worried by space growth spurt

NASA Deep Space Exploration Systems looks ahead to action-packed 2018

Tech faithful gather to worship at mecca of innovation

ULA completes major Starliner review for return to manned US spaceflight

SPACE TRAVEL
Arianespace begins building final 10 Ariane 5s ahead of Ariane 6 operational debut

SpaceX says rocket worked fine as spy satellite reported lost

Arianespace prepares for a busy 2018

Dragon space truck set for departure from Space Station

SPACE TRAVEL
Opportunity Takes Images Over the Holiday Period

Our rover could discover life on Mars - here's what it would take to prove it

Opportunity takes extensive imagery to decide where to go next

Mars: Not as dry as it seems

SPACE TRAVEL
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

SPACE TRAVEL
Intelsat signs contract with Arianespace for two launches

Aerospace Workforce Training - National Mandate for 2018

Nationwide search begins for young space entrepreneurs

Russia restores contact with Angolan satellite

SPACE TRAVEL
ESA researching see-through metals

New lensless camera creates detailed 3-D images without scanning

Orbital ATK receives order for 2nd In-Orbit Satellite Servicing Vehicle

NASA Holds 2nd Satellite Servicing Tech Day

SPACE TRAVEL
Iron-Rich Stars Host Shorter-Period Planets

Extraterrestrial Hypatia stone rattles solar system status quo

Chemists discover plausible recipe for early life on Earth

'SHARKs' will help Large Binocular Telescope hunt for Exoplanets

SPACE TRAVEL
New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt

Does New Horizons' Next Target Have a Moon?









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.