Subscribe free to our newsletters via your
. 24/7 Space News .




ENERGY TECH
Lean And Mean Biomass-Degrading Fungus Reveals Capabilities For Improved Biofuel Production
by Staff Writers
Walnut Creek CA (SPX) May 05, 2008


Trichoderma reesei.

The bane of military quartermasters may soon be a boon to biofuels producers. The genome analysis of a champion biomass-degrading fungus has revealed a surprisingly minimal repertoire of genes that it employs to break down plant cell walls, highlighting opportunities for further improvements in enzymes customized for biofuels production.

The results were published online in Nature Biotechnology by a team of government, academic, and industry researchers led by the U.S. Department of Energy Joint Genome Institute (DOE JGI) and Los Alamos National Laboratory (LANL).

The discovery of Trichoderma reesei, the target of the published analysis, dates back to World War II, when it was identified as the culprit responsible for the deterioration of fatigues and tents in the South Pacific.

This progenitor strain has since yielded variants for broad industrial applications and is known today as an abundant source of enzymes, particularly cellulases and hemicellulases, currently being explored to catalyze the deconstruction of plant cell walls as a first step towards the production of biofuels from lignocellulose.

"The information generated from the genome of T. reesei provides us with a roadmap for accelerating research to optimize fungal strains for reducing the current prohibitively high cost of converting lignocellulose to fermentable sugars," said Eddy Rubin, DOE JGI Director and one of the paper's senior authors.

"Improved industrial enzyme 'cocktails' from T. reseei and other fungi will enable more economical conversion of biomass from such feedstocks as the perennial grasses Miscanthus and switchgrass, wood from fast-growing trees like poplar, agricultural crop residues, and municipal waste, into next-generation biofuels. Through these incremental advances, we hope to eventually supplant the gasoline-dependent transportation sector of our economy with a more carbon-neutral strategy."

For millennia, civilization has long relied on nature's bounty for shelter and sustenance, with cheap and plentiful supplies of fossil fuels powering the economic engine of the industrial age, leading to the broad diversity of products synthesized from petroleum.

With rising concern about dependence on imported oil for transportation, the 21st century is signaling a shift towards "white" or industrial biotechnology-harnessing the metabolic processes of microbes to address energy challenges.

The research team compared the 34-million-nucleotide genome of T. reesei with 13 previously characterized fungi and discovered something counterintuitive. Despite its reputation as an avid plant polysaccharide degrader, T. reesei, was found to have the smallest inventory of genes powering its robust degradation machinery.

"We were aware of T. reesei's reputation as a producer of massive quantities of degrading enzymes, however we were surprised by how few enzyme types it produces, which suggested to us that its protein secretion system is exceptionally efficient," said Diego Martinez, the study's lead author and researcher supported by DOE JGI at LANL, and at the University of New Mexico.

Subsequently, he and his colleagues turned their attention to the complexities of T. reesei's secretory pathway components, which they had a hunch played an important role in the organism's success.

"While little appears to have changed in the secretion machinery since divergence with a common ancestor with yeast," said Martinez, "there are some intriguing differences in the way T. reesei processes some protein bonds important for cellulase production."

In their comparative analysis of T. reesei with other fungi, the team observed clustering of carbohydrate-active enzyme genes, which suggested a specific biological role: polysaccharide degradation. "While plant tissues are not likely the main source of nutrients for T. reesei, upon detection of cellulose and hemicellulose it seems that the organization of these degrading genes may be the key to a rapid response," said Martinez.

"The sequencing of the Trichoderma reesei genome is a major step towards using renewable feedstocks for the production of fuels and chemicals," said Joel Cherry, director of research activities in second-generation biofuels for Novozymes, one of the collaborating institutions on the study.

"This soft rot fungus serves as the world's most prodigious producer of cellulases and is already a dominant source of a wide variety of cellulase products for the textile industry worldwide. It is also the organism of choice for producing enzymes for the breakdown of cellulosic biomass to fermentable sugars, which can then be biologically converted to fuels and chemical building blocks.

"The information contained in its genome will allow us both to better understand how this organism degrades cellulose so efficiently and to understand how it produces the required enzymes so prodigiously. Using this information, it may be possible to improve both of these properties, decreasing the cost of converting cellulosic biomass to fuels and chemicals."

.


Related Links
DOE/Joint Genome Institute
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ENERGY TECH
Monsanto Company And Mendel Biotechnology Announce Cellulosic Biofuels Collaboration
Hayward CA (SPX) May 05, 2008
Monsanto and Mendel Biotechnology have announced a collaborative agreement to enhance the development of Mendel's BioEnergy Seeds and Feedstocks business. Under the terms of the agreement, Mendel will benefit from Monsanto's industry-leading expertise in the testing, breeding, and development of crops. Mendel and Monsanto have worked together on the development of biotechnology traits for ... read more


ENERGY TECH
Shanghai's Own Moon Vehicle Passes Test

China Blasts Off First Data Relay Satellite

KAGUYA Captures First Successful Shooting Of A Full Earth-Rise

New NASA Moon Mission Begins Integration Of Science Instruments

ENERGY TECH
Glaciers Reveal Martian Climate Has Been Recently Active

Andrews Space Wins NASA Exploration Contract

Artificial Intelligence Boosts Science From Mars

New Online Map Reveals Evidence Of The Forces That Once Shaped Mars

ENERGY TECH
SKorea's first astronaut suffers back injury: doctor

Design Begins On Twin Probes That Will Study Radiation Belts

SKorea's first astronaut in hospital with back pain

NASA Officials Turn To Air Force For Guppy Evaluation

ENERGY TECH
China Launches New Space Tracking Ship To Serve Shenzhou VII

Three Rocketeers For Shenzhou

China's space development can pose military threat: Japan

Brazil To Deepen Space Cooperation With China

ENERGY TECH
US Congressional Subcommittee Examines The Status Of The ISS

Expedition 16's Whitson Hands Over Command Of Station

Russia Needs Billions More To Complete It's ISS Segment

NASA Awards Space Station Water Contract To Hamilton Sundstrand

ENERGY TECH
ULA To Launch GRAIL

Zenit Rocket Puts Israeli Satellite Into Orbit

Khrunichev And ILS Announce Quality Initiative

Military And Civilian Telecom Satellites Are Readied For Third Ariane 5 Mission Of 2008

ENERGY TECH
Exo-Planet Roadmap Advisory Team Appointed By ESA

Plan To Identify Watery Earth-Like Planets Develops

Astronomers Listen To An Exoplanet-Host Star And Find Its Birthplace

New Rocky Planet Found In Constellation Leo

ENERGY TECH
SES ASTRA Starts New Orbital Position At 31.5 Degrees East

NASA Ames Partners With m2mi For Small Satellite Development

Graphene-Based Gadgets May Be Just Years Away

Loral Spins A Giant Web In Space As First ICO Bird Comes Alive




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement