Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Researchers develop new ultralight, ultrastiff 3D printed materials
by Kenneth K Ma for LLNL
Livermore CA (SPX) Jun 24, 2014


Lawrence Livermore Engineer Xiaoyu "Rayne" Zheng -- lead author of the Science article -- studies a macroscale version of the unit cell, which constitutes the ultralight, ultrastiff material. Image courtesy Julie Russell and LLNL.

Imagine a material with the same weight and density as aerogel -- a material so light it's called 'frozen smoke' -- but with 10,000 times more stiffness. This material could have a profound impact on the aerospace and automotive industries as well as other applications where lightweight, high-stiffness and high-strength materials are needed.

Lawrence Livermore National Laboratory (LLNL) and Massachusetts Institute of Technology (MIT) researchers have developed a material with these properties using additive micro-manufacturing processes. The research team's findings are published in a June 20 article in the journal Science.

Titled "Ultralight, Ultrastiff Mechanical Metamaterials," the article describes the team's development of micro-architected metamaterials -- artificial materials with properties not found in nature -- that maintain a nearly constant stiffness per unit mass density, even at ultralow density. Materials with these properties could someday be used to develop parts and components for aircraft, automobiles and space vehicles.

Most lightweight cellular materials have mechanical properties that degrade substantially with reduced density because their structural elements are more likely to bend under applied load. The team's metamaterials, however, exhibit ultrastiff properties across more than three orders of magnitude in density.

"These lightweight materials can withstand a load of at least 160,000 times their own weight," said LLNL Engineer Xiaoyu "Rayne" Zheng, lead author of the Science article. "The key to this ultrahigh stiffness is that all the micro-structural elements in this material are designed to be over constrained and do not bend under applied load."

The observed high stiffness is shown to be true with multiple constituent materials such as polymers, metals and ceramics, according to the research team's findings.

"Our micro-architected materials have properties that are governed by their geometric layout at the microscale, as opposed to chemical composition," said LLNL Engineer Chris Spadaccini, corresponding author of the article, who led the joint research team. "We fabricated these materials with projection micro-stereolithography."

This additive micro-manufacturing process involves using a micro-mirror display chip to create high-fidelity 3D parts one layer at a time from photosensitive feedstock materials. It allows the team to rapidly generate materials with complex 3D micro-scale geometries that are otherwise challenging or in some cases, impossible to fabricate.

"Now we can print a stiff and resilient material using a desktop machine," said MIT professor and key collaborator Nicholas Fang. "This allows us to rapidly make many sample pieces and see how they behave mechanically."

The team was able to build microlattices out of polymers, metals and ceramics.

For example, they used polymer as a template to fabricate the microlattices, which were then coated with a thin-film of metal ranging from 200 to 500 nanometers thick. The polymer core was then thermally removed, leaving a hollow-tube metal strut, resulting in ultralight weight metal lattice materials.

"We have fabricated an extreme, lightweight material by making these thin-film hollow tubes," said Spadaccini, who also leads LLNL's Center for Engineered Materials, Manufacturing and Optimization. "But it was all enabled by the original polymer template structure."

The team repeated the process with polymer mircolattices, but instead of coating it with metal, ceramic was used to produce a thin-film coating about 50 nanometers thick. The density of this ceramic micro-architected material is similar to aerogel.

"It's among the lightest materials in the world," Spadaccini said. "However, because of its micro-architected layout, it performs with four orders of magnitude higher stiffness than aerogel at a comparable density."

Lastly, the team produced a third ultrastiff micro-architected material using a slightly different process. They loaded a polymer with ceramic nanoparticles to build a polymer-ceramic hybrid microlattice. The polymer was removed thermally, allowing the ceramic particles to densify into a solid. The new solid ceramic material also showed similar strength and stiffness properties.

"We used our additive micro-manufacturing techniques to fabricate mechanical metameterials with unprecedented combinations of properties using multiple base material constituents - polymers, metals, and ceramics," Spadaccini said.

The LLNL-MIT teams' new materials are 100 times stiffer than other ultra-lightweight lattice materials previously reported in academic journals.

In addition to Spadaccini, Fang and Zheng, the LLNL-MIT research team consisted of LLNL researchers (Todd Weisgraber; Maxim Shusteff; Joshua Deotte; Eric Duoss; Joshua Kuntz; Monika Biener; Julie Jackson; and Sergei Kucheyev); and MIT researchers (Howon Lee and Qi "Kevin" Ge).

.


Related Links
Lawrence Livermore National Laboratory (LLNL)
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
New digital fabrication technique creates interlocking 3D-printed ceramic PolyBricks
New Rochelle NY (SPX) Jun 23, 2014
An innovative system using automated 3D printing technology and advanced digital tools to create customized, prefabricated ceramic building blocks, called PolyBricks, is enabling the construction of mortar-less brick building assemblies at much greater scales than was previously possible. The new techniques that use 3D printers to produce modular ceramic bricks from a single material that ... read more


TECH SPACE
NASA LRO's Moon As Art Collection Is Revealed

Solar photons drive water off the moon

55-year old dark side of the moon mystery solved

New evidence supporting moon formation via collision of 2 planets

TECH SPACE
Curiosity celebrates one-year Martian anniversary

Aluminum-Bearing Site on Mars Draws NASA Visitor

Mars Curiosity Rover Marks First Martian Year with Mission Successes

NASA's 'flying saucer' tests new Mars-landing technology

TECH SPACE
Orion Parachute Test Hits No Snags

Orion's parachutes help it land safely after 10-second free fall

NASA has a Problem with Unauthorized Access to it's Technologies

Elon Musk plans to take people to Mars within 10 years

TECH SPACE
Chinese lunar rover alive but weak

China's Jade Rabbit moon rover 'alive but struggling'

Chinese space team survives on worm diet for 105 days

Moon rover Yutu comes closer to public

TECH SPACE
Space station astronauts wager friendly bet on USA vs. Germany match

Last European space truck set for July 24 launch

A Laser Message from Space

D-Day for the International Space Station

TECH SPACE
SpaceX to launch six satellites all at once

Arianespace A World Leader In The Satellite Launch Market

Airbus Group and Safran To Join Forces in Launcher Activities

European satellite chief says industry faces challenges

TECH SPACE
Mega-Earth in Draco Smashes Notions of Planetary Formation

Kepler space telescope ready to start new hunt for exoplanets

Astronomers Confounded By Massive Rocky World

Two planets orbit nearby ancient star

TECH SPACE
Whale of a target: harpooning space debris

Strange physics turns off laser

Raytheon touts blimp-borne radar system

NIST technique could make sub-wavelength images at radio frequencies




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.