. 24/7 Space News .
TIME AND SPACE
Las Cumbres Works with NASA, Space Station in Black Hole Discovery
by Staff Writers
Goleta CA (SPX) Jan 18, 2019

Artist's conception of an accretion disk of material flowing around a supermassive black hole, launching a jet of energetic particles

Supermassive black holes, the type at the centers of galaxies that are millions or billions times the mass of the Sun, were thought to eat and grow in only two ways: either by ripping apart a star in a Tidal Disruption Event (TDE), or by nearly continuous accretion from a disk of material as is seen in a quasar or radio galaxy - this phenomenon is known as Active Galactic Nuclei (AGN).

In new research published in Nature Astronomy, astronomers have seen several examples of a new third kind of flare, one longer lived than a star being ripped apart and not as constant as a quasar.

The new phenomenon was revealed by an international team of astronomers led by Benny Trakhtenbrot of Tel Aviv University in a tour de force of observations spanning observatories around the world and in space, including data from NASA's Swift and NuSTAR satellites, the NICER (Neutron star Interior Composition Explorer) instrument on the International Space Station, and Las Cumbres Observatory, a globe-spanning network of robotic telescopes.

In a normal AGN or quasar, the brightness of the center part of the galaxy fluctuates over many years as the black hole devours material from an accretion disk, similar to water flowing down a bathtub drain. Material spins ever-more quickly as it approaches the black hole, causing it to glow in optical, ultraviolet light and x-rays.

In a Tidal Disruption Event, a star is ripped apart by the black hole, causing a large single spike in brightness that only lasts for a few months. In the new class of flares, the area around the black hole increases in optical and ultraviolet emission by about 50%, and in X-rays by factors of several, for more than a year before fading.

The new finding began with the discovery of Astronomical Transient AT 2017bgt by the ASAS-SN network of telescopes. Soon after, astronomers at Las Cumbres Observatory started monitoring the transient with their network of ground-based telescopes and noticed behavior never before seen.

The team also triggered space-based observations to observe the ultraviolet and x-ray properties, as photons at those high energies are blocked by Earth's atmosphere. Later, they found another two other examples of similar phenomena around other supermassive black holes in other galaxies, establishing it as a new class of black hole feeding.

Andy Howell, staff scientist at LCO and a coauthor on the study said, "It is remarkable to have three different x-ray facilities in orbit, Swift, NICER, and NuSTAR, working together to help us see the extraordinarily high energies radiated near this black hole. But they only tell part of the story. Long-term ground-based monitoring was also necessary to have observations that stretch over more than a year, and that's exactly what LCO was built for."

Howell draws an analogy with water: "An AGN is like getting rained on - a constant trickle that might vary a bit in intensity, but lasts for a while. A tidal disruption event is like getting hit by a sprinkler - there's just one stream of water, and it might be more intense than rain. But this new kind of flare is like getting hit by a firehose in the face. Now we have to figure out, 'How the hell did nature produce that that?' Black holes are even weirder than we thought."

Astronomers are confounded as to how a stream of material apparently bigger than a star flows around the black hole to produce such emission. As it is the first time such a phenomenon has been seen, it has not yet been simulated.

Since it remains unknown how black holes grow in size from something only a few times the mass of the sun up to, in the case of AT 2017bgt, 14 million times the mass of the Sun, astronomers are excited to get any new insight into the process of how black holes eat and grow.

"We are trying to find all the different ways black holes gain mass with LCO at the center of this effort," says Iair Arcavi, formerly a postdoc at LCO and now a faculty member at Tel Aviv University and a co-author on the study, "maybe now we'll finally solve the riddle of how nature makes these monsters that lie at the center of every galaxy."

Research Report: "A New Class of Flares from Accreting Supermassive Black Holes," Benny Trakhtenbrot et al., 2019 Jan. 14, Nature Astronomy


Related Links
Las Cumbres Observatory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
The orderly chaos of black holes
Geneva, Switzerland (SPX) Jan 16, 2019
During the formation of a black hole a bright burst of very energetic light in the form of gamma-rays is produced, these events are called gamma-ray bursts. The physics behind this phenomenon includes many of the least understood fields within physics today: general gravity, extreme temperatures and acceleration of particles far beyond the energy of the most powerful particle accelerators on Earth. In order to analyse these gamma-ray bursts, researchers from the University of Geneva (UNIGE), in co ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Beans to be next vegetable on astronauts' menu by 2021

Moon sees first cotton-seed sprout

Space dreams: Alum Frank Bunger's quest to make space tourism a reality

NASA Astronaut Hague Who Failed to Reach ISS May Make One-Year Flight

TIME AND SPACE
SLS liquid hydrogen tank test article loaded into test stand

Closing The Space Launch Information Gap

SpaceX laying off 10 percent of workforce

Mechanisms are Critical to All Space Vehicles

TIME AND SPACE
Team selected by Canadian Space Agency to study Mars minerals

UK tests self driving robots for Mars

ExoMars mission has good odds of finding life on Mars if life exists.

Mars Express gets festive: A winter wonderland on Mars

TIME AND SPACE
China to deepen lunar exploration: space expert

China launches Zhongxing-2D satellite

China welcomes world's scientists to collaborate in lunar exploration

In space, the US sees a rival in China

TIME AND SPACE
A new era of global aircraft surveillance is on the horizon as Aireon completes system deployment

Australia's 'space city' hosts rising stars from around the globe

Competition for Young Space Entrepreneurs launched

SpaceX Falcon 9 completes Iridium Next launch campaign

TIME AND SPACE
Kiel physicists discover new effect in the interaction of plasmas with solids

Nebraska leads $11 million study to develop radiation exposure drugs

Penn engineers 3D print smart objects with 'embodied logic'

Raytheon awarded $9.3M contract for Spy-1 radar work

TIME AND SPACE
Double star system flips planet-forming disk into pole position

The Truth is Out There: New Online SETI Tool Tracks Alien Searches

First comprehensive, interactive tool to track SETI searches

Potential for life on planet around Barnard's Star

TIME AND SPACE
Scientist Anticipated "Snowman" Asteroid Appearance

New Ultima Thule Discoveries from NASA's New Horizons

New Horizons unveils Ultima and Thule as a binary Kuiper

NASA says faraway world Ultima Thule shaped like 'snowman'









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.