. 24/7 Space News .
EARLY EARTH
Lake bed reveals details about ancient Earth
by Staff Writers
Houston TX (SPX) Jul 19, 2018

illustration only

Sleuthing by a Rice University postdoctoral fellow is part of a new Nature paper that gives credence to theories about Earth's atmosphere 1.4 billion years ago.

Rice's Justin Hayles and his colleagues, led by Peter Crockford at McGill University in Montreal, analyzed samples from an ancient Canadian lake bed that turned up anomalous oxygen isotopes embedded in deposits of sulfate. The oxygen provides hints at the extent of life on ancient Earth's surface.

The researchers found the planet's gross primary production - a measure of processes like photosynthesis - was a small fraction of modern levels during a stretch of the Proterozoic eon known to researchers as the "Boring Billion" because of the planet's environmental and evolutionary stability.

"The Boring Billion is called boring because it seemed for a long time that nothing remarkable was occurring on Earth's surface, but the evolution of Earth and the life on its surface continued," Hayles said.

Hayles, a National Science Foundation postdoctoral fellow, did the work as a Ph.D. student at Louisiana State University. He joined the Rice lab of Laurence Yeung, an assistant professor of Earth, environmental and planetary sciences, two years ago.

Hayles' analysis with specialized mass-spectrometry equipment was part of the effort to analyze cores taken from the lake bed. "When the project started, we were just looking to see what sulfates looked like through Earth's history," he said. "In the process, we analyzed this one set of samples and found an anomaly."

That anomaly was an unexpected amount of oxygen-17, one of three stable isotopes of oxygen. "This was shocking because we thought this anomaly could only exist when atmospheric carbon dioxide concentrations are extremely high, such as during a 'snowball Earth' event," Hayles said. "It turns out that this condition is not needed if concentrations of atmospheric oxygen (O2) and bioproductivity are much lower than today."

Because oxygen is highly reactive, it easily combined with sulfide in what was then a lake at Ontario's Sibley Basin. "When you form sulfate from sulfide, you get a little bit of O2 incorporated," he said. "That is preserved as a capsule of the ancient atmosphere, so it contains oxygen from back in the Proterozoic, 1.4 billion years ago."

The researchers suggested their discovery is the oldest direct measurement of atmospheric oxygen isotopes by nearly a billion years, taken from a time when microorganisms, including bacteria and algae, were beginning to ramp up production through photosynthesis but had not yet reached the fertile period that triggered a second "oxygenation event."

"It has been suggested for many decades now that the composition of the atmosphere has significantly varied through time," said Crockford, now a postdoctoral fellow at Princeton. "We provide unambiguous evidence that it was indeed much different 1.4 billion years ago."

The researchers said their discovery could help in the search for clues to life on other planets.

"Earth during the Proterozoic was like an alien world compared with the modern Earth," Hayles said. "The atmosphere had only a small amount of oxygen and the environment was arguably much warmer.

"Knowing how well microbial life thrived tells us what to expect on a hypothetical planet with a similar environment," he said. "There is potential that if Mars was ever sufficiently Earth-like and the right material found its way to Earth, this technique could provide similar evidence."

Research paper


Related Links
Rice University
Explore The Early Earth at TerraDaily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


EARLY EARTH
Scientists discover Earth's youngest banded iron formation in western China
Edmonton, Canada (SPX) Jul 13, 2018
The banded iron formation, located in western China, has been conclusively dated as Cambrian in age. Approximately 527 million years old, this formation is young by comparison to the majority of discoveries to date. The deposition of banded iron formations, which began approximately 3.8 billion years ago, had long been thought to terminate before the beginning of the Cambrian Period at 540 million years ago. "This is critical, as it is the first observation of a Precambrian-like banded iron format ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
NASA and Peanuts Worldwide to Collaborate on Deep Space Learning Activities

Russian cargo ship docks at ISS in record time

Google parent 'graduates' moonshot projects Loon, Wing

Testing Refines Requirements for Deep Space Habitat Design

EARLY EARTH
Largest-ever solid rocket motor poised for first hot firing

Experimental Spaceplane Program Successfully Completes Engine Test Series

Aerojet Rocketdyne demonstrates 24-Hour turnaround of AR-22 Engine

Chinese Space Company Planning Launch of Largest Privately Owned Liquid Rocket

EARLY EARTH
Scientists Discover "Ghost Dunes" On Mars

Airbus wins two ESA studies for Mars Sample Return mission

NASA listens out for Opportunity everyday

UK space sector set to benefit from new European Space Agency contract

EARLY EARTH
China readying for space station era: Yang Liwei

China launches new space science program

China Rising as Major Space Power

China launches new-tech experiment twin satellites

EARLY EARTH
mu Space confirms payload on Blue Origin's upcoming New Shepard flight

China Mulls Creation of Joint Global Satellite System with Russia

EIB and ESA to cooperate on increasing investments in the European Space Sector

Laser-Based System is Set to Expand Space-to-Ground Communication

EARLY EARTH
Chinese scientists achieve success in nitrogen metallization

A high-yield perovskite catalyst for the oxidation of sulfides

Photonic capsules for injectable laser resonators

Paper-cut provides model for 3D intelligent nanofabrication

EARLY EARTH
TESS Spacecraft Continues Testing Prior to First Observations

NASA's Webb Space Telescope to Inspect Atmospheres of Gas Giant Exoplanets

Rocky planet neighbor looks familiar, but is not Earth's twin

NASA's Kepler Spacecraft Pauses Science Observations to Download Science Data

EARLY EARTH
First Global Maps of Pluto and Charon from New Horizons Published

Europa's Ocean Ascending

Jupiter's moons create uniquely patterned aurora on the gas giant planet

'Cataclysmic' collision shaped Uranus' evolution









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.