. 24/7 Space News .
WATER WORLD
K computer and high-tech weather radar come together to predict sudden torrential rains
by Staff Writers
Tokyo, Japan (SPX) Aug 10, 2016


File image.

Today, supercomputer-based weather predictions are typically done with simulations that use grids spaced at least one kilometer apart, and incorporate new observational data every hour. However, due to the roughness of the calculations, these simulations cannot accurately predict the threat of torrential rains, which can develop within minutes when cumulonimbus clouds suddenly develop.

Now, an international team led by Takemasa Miyoshi of the RIKEN Advanced Center for Computational Science (AICS) has used the powerful K computer and advanced radar observational data to accurately predict the occurrence of torrential rains in localized areas.

The key to the current work, to be published later this month in the August issue of the Bulletin of the American Meteorological Society, is "big data assimilation" using computational power to synchronize data between large-scale computer simulations and observational data.

Using the K computer, the researchers carried out 100 parallel simulations of a convective weather system, using the nonhydrostatic mesoscale model used by the Japan Meteorological Agency, but with 100-meter grid spacing rather than the typical 2-kilometer or 5-kilometer spacing, and assimilated data from a next-generation phased array weather radar, which was launched in the summer of 2012 by the National Institute of Information and Communications Technology (NICT) and Osaka University. With this, they produced a high-resolution three-dimensional distribution map of rain every 30 seconds, 120 times more rapidly than the typical hourly updated systems operated at the world's weather prediction centers today.

To test the accuracy of the system, the researchers attempted to model a real case--a sudden storm that took place on July 13, 2013 in Kyoto, close enough to Osaka that it was caught by the radars at Osaka University.

The simulations were run starting at 15:00 Japanese time, and were tested as pure simulations without observational data input as well as with the incorporation of data every 30 seconds, on 100-meter and 1-kilometer grid scales.

The simulation alone was unable to replicate the rain, while the incorporation of observational data allowed the computer to represent the actual storm. In particular, the simulation done with 100-meter grids led to a very accurate replication of the storm compared to actual observations.

According to Miyoshi, "Supercomputers are becoming more and more powerful, and are allowing us to incorporate ever more advanced data into simulations. Our study shows that in the future, it will be possible to use weather forecasting to predict severe local weather phenomena such as torrential rains, a growing problem which can cause enormous damage and cost lives."

The research was carried out by researchers from RIKEN AICS together with the Meteorological Research Institute, the University of Buenos Aires, NICT, Osaka University, and the Meteorological Satellite Center.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
RIKEN
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
WATER WORLD
China sinkhole swallows passers-by: report
Beijing (AFP) Aug 3, 2016
A huge sinkhole opened up in China, swallowing a section of road and passers-by and leaving at least one person missing, state media reported Wednesday. At least three people fell into the 30 metre (99 feet) long, 20 metre wide and nine metre deep sinkhole, which appeared during heavy rain in downtown Zhengzhou, in the central province of Henan, the Beijing Youth Daily said, citing witnesses ... read more


WATER WORLD
Heart hazard for Apollo astronauts: study

Asteroid that formed moon's Imbrium Basin may have been protoplanet-sized

Russian and US engineers plan manned moon mission

SSTL and Goonhilly announce partnership and a call for lunar orbit payloads

WATER WORLD
Digging deeper into Mars

Engine burn gives Mars mission a kick

NASA's Viking Data Lives on, Inspires 40 Years Later

Opportunity Rover wrapping up work within Marathon Valley

WATER WORLD
Tile Bonding Begins for Orion's First Mission Atop Space Launch System Rocket

Russia, US Discuss Lunar Station for Mars Mission

Disney theme park in Shanghai nears a million visitors

NASA Sails Full-Speed Ahead in Solar System Exploration

WATER WORLD
China to expand int'l astronauts exchange

China's Agreement with United Nations to Help Developing Countries Get Access to Space

Chinese tracking ship Yuanwang-7 starts maiden voyage

Chinese mega-telescope obtains data on 7 million stars

WATER WORLD
Dream Chaser Spacecraft on Track to Supply Cargo to ISS

Russia launches ISS-bound cargo ship

New Crew Members, Including NASA Biologist, Launch to Space Station

Russian New Soyuz-MS Spacecraft Docks With ISS for First Time

WATER WORLD
Russia Postpones Launch of Proton Rocket With US Satellite Until October 10

The rise of commercial spaceports

India earned Rs 230 crore through satellite launch services in FY16

US Plan to Diversify Expendable Space Launch Vehicles Being Questioned

WATER WORLD
Alien Solar System Boasts Tightly Spaced Planets, Unusual Orbits

NASA's Next Planet Hunter Will Look Closer to Home

First atmospheric study of Earth-sized exoplanets reveals rocky worlds

Atmospheric chemistry on paper

WATER WORLD
Hot 'new' material found to exist in nature

Flexible building blocks of the future

A mini-antenna for the data processing of tomorrow

New metamaterials can change properties with a flick of a light-switch









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.