Subscribe free to our newsletters via your
. 24/7 Space News .




Subscribe free to our newsletters via your




















Japanese And Nasa Satellites Unveil New Type Of Active Galaxy

In the newly discovered type of AGN, the disk and torus surrounding the black hole are so deeply obscured by gas and dust that no visible light escapes, making them very difficult to detect. Image credit: Aurore Simonnet, Sonoma State University.
by Staff Writers
Greenbelt MD (SPX) Jul 31, 2007
An international team of astronomers using NASA's Swift satellite and the Japanese/U.S. Suzaku X-ray observatory has discovered a new class of active galactic nuclei (AGN). By now, you'd think that astronomers would have found all the different classes of AGN - extraordinarily energetic cores of galaxies powered by accreting supermassive black holes. AGN such as quasars, blazars, and Seyfert galaxies are among the most luminous objects in our Universe, often pouring out the energy of billions of stars from a region no larger than our solar system.

But by using Swift and Suzaku, the team has discovered that a relatively common class of AGN has escaped detection...until now. These objects are so heavily shrouded in gas and dust that virtually no light gets out.

"This is an important discovery because it will help us better understand why some supermassive black holes shine and others don't," says astronomer and team member Jack Tueller of NASA's Goddard Space Flight Center in Greenbelt, Md.

Evidence for this new type of AGN began surfacing over the past two years. Using Swift's Burst Alert Telescope (BAT), a team led by Tueller has found several hundred relatively nearby AGNs that were previously missed because their visible and ultraviolet light was smothered by gas and dust. The BAT was able to detect high-energy X-rays from these heavily blanketed AGNs because, unlike visible light, high-energy X-rays can punch through thick gas and dust.

To follow up on this discovery, Yoshihiro Ueda of Kyoto University, Japan, Tueller, and a team of Japanese and American astronomers targeted two of these AGNs with Suzaku. They were hoping to determine whether these heavily obscured AGNs are basically the same type of objects as other AGN, or whether they are fundamentally different. The AGNs reside in the galaxies ESO 005-G004 and ESO 297-G018, which are about 80 million and 350 million light-years from Earth, respectively.

Suzaku covers a broader range of X-ray energies than BAT, so astronomers expected Suzaku to see X-rays across a wide swath of the X-ray spectum. But despite Suzaku's high sensitivity, it detected very few low- or medium-energy X-rays from these two AGN, which explains why previous X-ray AGN surveys missed them.

According to popular models, AGNs are surrounded by a donut-shaped ring of material, which partially obscures our view of the black hole. Our viewing angle with respect to the donut determines what type of object we see. But team member Richard Mushotzky, also at NASA Goddard, thinks these newly discovered AGN are completely surrounded by a shell of obscuring material. "We can see visible light from other types of AGN because there is scattered light," says Mushotzky. "But in these two galaxies, all the light coming from the nucleus is totally blocked."

Another possibility is that these AGN have little gas in their vicinity. In other AGN, the gas scatters light at other wavelengths, which makes the AGN visible even if they are shrouded in obscuring material.

"Our results imply that there must be a large number of yet unrecognized obscured AGNs in the local universe," says Ueda.

In fact, these objects might comprise about 20 percent of point sources comprising the X-ray background, a glow of X-ray radiation that pervades our Universe. NASA's Chandra X-ray Observatory has found that this background is actually produced by huge numbers of AGNs, but Chandra was unable to identify the nature of all the sources.

By missing this new class, previous AGN surveys were heavily biased, and thus gave an incomplete picture of how supermassive black holes and their host galaxies have evolved over cosmic history. "We think these black holes have played a crucial role in controlling the formation of galaxies, and they control the flow of matter into clusters," says Tueller. "You can't understand the universe without understanding giant black holes and what they're doing. To complete our understanding we must have an unbiased sample."

The discovery paper will appear in the August 1st issue of the Astrophysical Journal Letters.

Community
Email This Article
Comment On This Article

Related Links
Swift at Goddard
Suzaku at Goddard
Stellar Chemistry, The Universe And All Within It



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Arizona Team Discovers Supergiant Star Spews Molecules Needed For Life
Tucson AZ (SPX) Jul 27, 2007
University of Arizona astronomers who are probing the oxygen-rich environment around a supergiant star with one of the world's most sensitive radio telescopes have discovered a score of molecules that include compounds needed for life. "I don't think anyone would have predicted that VY Canis Majoris is a molecular factory. It was really unexpected," said Arizona Radio Observatory (ARO) Director Lucy Ziurys, UA professor of astronomy and of chemistry.







  • Houston Wine Company Offers Wine Discount To NASA Astronauts
  • Udall Says House NASA Budget A Step In The Right Direction
  • NASA Faces Congress Scrutiny As Russia Denies US Astronauts Had Chance To Booze
  • NASA Jolted By Boozing Astronauts And Sabotage

  • Phoenix Hits The Pad
  • Planetary Society Set To Launch First Library Of Mars
  • Fossil Hunting On Mars
  • Spirit Sees Dustier Sky

  • India Plans To Double Satellite Launches Within Five Years
  • Russian Space Firm Signs 14 Deals For Commercial Rocket Launches
  • Spaceway 3 Is Delivered To The Spaceport For Its Mid-August Ariane 5 Launch
  • Sea Launch To Resume Zenit Launches In October

  • ESA Mission Highlighted At Remote Sensing Conference
  • Third Sino-Brazilian EO Satellite To Be Launched By October
  • Ball Aerospace Prepares To Ship WorldView I
  • DigitalGlobe Expands Commercial Imagery Distribution Network In Australia And New Zealand

  • Charon: An Ice Machine In The Ultimate Deep Freeze
  • New Horizons Slips Into Electronic Slumber
  • Nap Before You Sleep For Your Cruise Into The Abyss Of Outer Sol
  • The Dwarf Planet Known As Eris Is More Massive Than Pluto

  • Japanese And Nasa Satellites Unveil New Type Of Active Galaxy
  • Arizona Team Discovers Supergiant Star Spews Molecules Needed For Life
  • Interstellar Chemistry Gets More Complex With New Charged-Molecule Discovery
  • First Pulsar Detection With LOFAR Station

  • Throttling Back To The Moon
  • Moonshine Can Reflect Lunar Composition
  • Northrop Grumman Helps NASA Shape Plans For Affordable Lunar Lander
  • Summer Moon Illusion

  • Salco Technologies Obtains Intrinsically Safe UL913 Certifications For Remote Monitoring Equipment
  • T-Mobile Austria Customers Can Now Avoid Becoming Lost With GPS SatNav From TeleNav
  • Cell Phones And PDAs Revolutionize How Consumers Find Homes On REALTOR.com
  • ShoZu One-Click Image Upload Service To Be Embedded In Samsung Handsets

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement