. 24/7 Space News .
WATER WORLD
Into the DNA of a coral reef predator
by Staff Writers
Onna, Japan (SPX) Apr 10, 2017


Members of the OIST Marine Genomics Unit next to the next-generation DNA sequencing device used in this study. Standing, from left: Prof. Noriyuki Satoh and Dr. Eiichi Shoguchi. Sitting, from left: Kanako Hisata and Ken Baughman. Image courtesy OIST. For a larger version of this image please go here. Watch a video on the research here.

The Crown-of-Thorns Starfish - or COTS - is a familiar sight for scuba divers in tropical waters: the starfish, resembling the biblical that gave it its name, swarms over coral reefs around the world in huge spawning and destructive events. In the modern era, COTS were first reported in 1957 from the very shores in front of OIST, in the village of Onna-son, Okinawa where it is locally known as "onihitode" - the "Demon Starfish". Subsequently COTS were observed most dramatically on the Great Barrier Reef where they started aggregating in colonies up to several million individuals, devouring reefs completely and becoming a major ecological concern.

New research, published in Nature, brings a trove of new information to potentially control the invasive species. A collaboration of OIST and Australian scientists sequenced the entire COTS genome for the first time, revealing the starfishes from the Great Barrier Reef and Okinawa share identical genetic material.

"Although the samples were taken from individuals found 5000kms apart, on different sides of the equator, we confirmed they belong to the same species" commented Prof. Satoh, author of the study. Second, they identified water-borne molecules COTS use to communicate - like an underwater sense of smell - to regroup in large destructive populations.

While typical genome projects focus on the DNA from a single individual, one strength of this study is a very robust model of the COTS genetic blueprint thanks to the collation of the genetic material from two individuals decoded independently. The researchers collected one specimen on the Great Barrier Reef, the other from a reef in Motobu on the western coast of Okinawa.

Both genomes were sequenced by the DNA Sequencing Facility at OIST; the sequences were then assembled into genomes and analyzed by OIST graduate student Kenneth Baughman and his colleagues in the Marine Genomics Unit led by Prof. Satoh. On the other side of the equator, Australian researchers at the University of Queensland bioinformatically analyzed the COTS genomes.

However, a genome by itself is like a kit for a piece of furniture without the instruction manual - you have all the pieces, you just do not know what they do individually, how they fit with each other and in which order to assemble them. Scientists would have a hard time solving the role of each gene without clues, particularly those specific to COTS. Therefore, they resorted to a different strategy to identify genes that could be used in COTS biocontrol.

Based on observation of COTS behavior during spawning events, researchers hoped to identify chemical signals COTS are known to release in the water to communicate with other COTS close by. To do so, researchers at University of the Sunshine Coast and the Australian Institute of Marine Science built a Y-shaped aquatic maze, with a starfish starting at the end of the longest branch.

In one experiment, they fed one of shorter branches with water collected from an aggregation of COTS. Because the starfish moved towards this branch of the maze as compared to control water samples, they concluded that those water samples must have contained molecules that induced the starfish to gather with other members of its species.

The same water samples were then analyzed biochemically to identify these molecules, which were then mapped to the COTS genomic data. Because the scientists are now in possession of the full genome, they could confirm that these molecules originated from COTS.

Researchers exposed 26 COTS-specific genes that could be involved in secreting 107 water-borne communication signals. Moreover, the genome includes 750 genes coding for proteins akin to the starfish version of smell receptors, which could highlight how COTS perceives and analyzes these signals in the surrounding water. This might be the first step towards understanding how to disrupt communication on a large scale and prevent reef damage by defusing mass spawning events.

OIST graduate student and study author Ken Baughman commented: "On the one hand, this report provides us with biocontrol targets that we can start testing on COTS today. On the other, the high quality genomic data continues to provide fundamental insights for evolutionary developmental biology. Hopefully, this report will bring attention to both areas of research."

Research paper

WATER WORLD
Catch shares slow the 'race to fish'
Durham NC (SPX) Apr 10, 2017
A detailed analysis of 39 U.S. fisheries by Duke University economists offers strong new evidence that catch shares curb the "race to fish" that compresses fishing seasons. Slowing competition with catch shares allows fishers to time their catches to match market demand and capitalize on changing profit opportunities throughout the season. And it can reduce occupational hazards and improve the q ... read more

Related Links
Okinawa Institute of Science and Technology (OIST) Graduate University
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
You Say Tomato, I Say Tomatosphere: ISS Science to the Classroom

NASA Invests in 22 Visionary Exploration Concepts

No Roscosmos plans to send space tourists to ISS before 2020

US, Russian Astronauts Prepare for April Crew Swap on Space Station

WATER WORLD
Dream Chaser to use Europe's next-generation docking system

Europe's largest sounding rocket launched from Esrange

Bezos sells $1 bn in Amazon stock yearly to pay for rocket firm

US-Russia Venture Hopes to Sell More RD-180 Rocket Engines to US

WATER WORLD
Chile desert combed for clues to life on Mars

Russia critcal to ExoMars Project says Italian Space Agency Head

New MAVEN findings reveal how Mars' atmosphere was lost to space

Potential Mars Airplane Resumes Flight

WATER WORLD
Yuanwang fleet to carry out 19 space tracking tasks in 2017

China Develops Spaceship Capable of Moon Landing

Long March-7 Y2 ready for launch of China's first cargo spacecraft

China Seeks Space Rockets Launched from Airplanes

WATER WORLD
Ukraine in talks with ESA to become member

BRICS States Want to Expand Cooperation to Space Science

Mitsubishi Electric to Build New Satellite Production Facility

Horizon 2020 European funded DEMOCRITOS project concludes work with some key outcomes

WATER WORLD
Despite EU fines, Greece struggling to promote recycling

New method for 3-D printing extraterrestrial materials

Ultra-thin multilayer film for next-generation data storage and processing

USC Viterbi researchers develop new class of optoelectronic materials

WATER WORLD
Distantly related fish find same evolutionary solution to dark water

'Body awareness' offers further proof of elephant intelligence

'Smart' cephalopods trade off genome evolution for prolific RNA editing

Exoplanet mission gets ticket to ride

WATER WORLD
When Jovian Light and Dark Collide

Neptune's journey during early planet formation was 'smooth and calm'

Hubble takes close-up portrait of Jupiter

Neptune's movement from the inner to the outer solar system was smooth and calm









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.