Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Innovative device allows 3-D imaging of the breast with less radiation
by Staff Writers
Newport News VA (SPX) Jun 22, 2016


Adding this variable angle slant hole collimator to an existing breast molecular imaging system allows the system to get six times better contrast of cancer lesions in the breast, providing the same or better image quality while also potentially reducing the radiation dose to the patient by half.

Preliminary tests have demonstrated that a new device may enable existing breast cancer imagers to provide up to six times better contrast of tumors in the breast, while maintaining the same or better image quality and halving the radiation dose to patients. The advance is made possible by a new device developed for 3D imaging of the breast by researchers at the Department of Energy's Thomas Jefferson National Accelerator Facility, Dilon Technologies and the University of Florida Department of Biomedical Engineering.

In breast cancer screening, mammography is the gold standard. But about half of all women who follow standard screening protocol for 10 years will receive a false-positive result that will require additional screening, particularly women who have dense breast tissue. Used in conjunction with mammography, imaging based on nuclear medicine is currently being used as a successful secondary screening alongside mammography to reduce the number of false positive results in women with dense breasts and at higher risk for developing breast cancer.

Now, researchers are hoping to improve this imaging technique, known as molecular breast imaging or breast specific gamma imaging, with better image quality and precise location (depth information) within the breast, while reducing the amount of radiation dose to the patient for these procedures.

According to Drew Weisenberger, leader of the Jefferson Lab Radiation Detector and Imaging Group, a new device called a variable angle slant hole collimator provides all of these benefits and more. When used in a molecular breast imager, the device has just demonstrated in early studies to capture 3D molecular breast images at higher resolution than current 2D scans in a format that may be used alongside 3D digital mammograms.

"These results really focus on the breast. We hope to build on this to perhaps improve the imaging of other organs," Weisenberger said. The new device replaces a component in existing molecular breast imagers.

While a mammogram uses X-rays to show the structure of breast tissue, molecular breast imagers show tissue function. For instance, cancer tumors are fast growing, so they gobble up certain compounds more rapidly that healthy tissue. A radiopharmaceutical made of such a compound will quickly accumulate in tumors. A radiotracer attached to the molecule gives off gamma rays, which can be picked up by the molecular breast imager.

"You can image that accumulation external to the breast by using a gamma camera," said Weisenberger.

Current molecular breast imaging systems use a traditional collimator, which is essentially a rectangular plate of dense metal with a grid of holes, to "filter" the gamma rays for the camera. The collimator only allows the system to pick up the gamma rays that come straight out of the breast, through the holes of collimator, and into the imager. This provides for a clear, well-defined image of any cancer tumors.

The variable angle slant hole collimator, or VASH collimator, is constructed from a stack of 49 tungsten sheets, each one a quarter of a millimeter thick and containing an identical array of square holes. The sheets are stacked like a deck of cards, with angled edges on two sides. The angle of the array of square holes in the stack can be easily slanted by two small motors that slide the individual sheets by their edges. The result is a systematic varying of the focusing angle of the collimator during the imaging procedure.

"Now, you can get a whole range of angles of projections of the breast without moving the breast or moving the imager. You're able to come in real close, you're able to compress the breast, and you can get a one-to-one comparison to a 3D mammogram," Weisenbeger explained.

In a recent test of the system, the researchers evaluated the spatial resolution and contrast-to-noise ratio in images of a "breast phantom," a plastic mockup of a breast with four beads inside simulating cancer tumors of varying diameter that are marked with a radiotracer.

They found that using the VASH collimator with an existing breast molecular imaging system, they could get six times better contrast of tumors in the breast, which could potentially reduce the radiation dose to the patient by half from the current levels, while maintaining the same or better image quality. The test results match a published paper that predicted this performance via a Monte Carlo simulation.

The collimator was built at Jefferson Lab and the test results were analyzed at the University of Florida with funds provided by a Commonwealth Research Commercialization Fund grant from the Commonwealth of Virginia's Center for Innovative Technology, and with matching support provided by Dilon Technologies.

The test results were presented at the 2016 Society of Nuclear Medicine and Molecular Imaging Annual Meeting in San Diego on June 13. The technologies developed for the Variable Angle Slant Hole Collimator are included in two filings to the U.S. Patent and Trademark Office.

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Thomas Jefferson National Accelerator Facility
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Building the Future: Space Station Crew 3-D Prints First Student-Designed Tool in Space
Huntsville AL (SPX) Jun 20, 2016
When NASA fired up the Additive Manufacturing Facility on the International Space Station to begin more testing of the emerging 3-D printing technology in orbit, one college student in particular watched intently. In autumn of 2014, a high school senior in Enterprise, Alabama, Robert Hillan entered the Future Engineers Space Tool design competition, which challenged students to create a de ... read more


TECH SPACE
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

TECH SPACE
Rover Opportunity Wrapping up Study of Martian Valley

Delayed ExoMars mission gets 77-mln-euro boost

NASA signs space deal with United Arab Emirates

NASA Mars Rover Descends Plateau, Turns Toward Mountain

TECH SPACE
TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

TECH SPACE
Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

NASA Chief: Congress Should Revise US-China Space Cooperation Law

TECH SPACE
Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

Astronauts enter inflatable room at space station

First steps into BEAM will expand the frontiers of habitats for space

TECH SPACE
Launch Vehicle Ascent Trajectories and Sequencing

MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

Russian Proton-M Rocket Puts US Intelsat DLA-2 Satellite Into Orbit

TECH SPACE
Clouds, haze cause astronomers to overestimate size of exoplanets

New planet is largest discovered that orbits 2 suns

Smaller Stars Pack Big X-ray Punch for Would-Be Planets

Planet-Devouring Star Reveals Possible Limestone Crumbs

TECH SPACE
Cereal science: How scientists inverted the Cheerios effect

New approach to microlasers

Oregon chemists build a new, stable open-shell molecule

Neutrons reveal unexpected magnetism in rare-earth alloy




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement