Subscribe free to our newsletters via your
. 24/7 Space News .




SPACE MEDICINE
ISS astronauts developing near real-time osteoporosis and bone cancer test
by Staff Writers
Paris, France (SPX) Aug 19, 2015


File image.

A new test for offers the possibility of near real time monitoring of bone diseases, such as osteoporosis and multiple myeloma. The functionality of the test, which measures changes in calcium isotope ratios, has been validated on blood samples from NASA space shuttle astronauts.

Our bones are largely built of calcium, and the turnover of calcium can indicate the development of bone diseases such as osteoporosis and the cancer multiple myeloma. Geochemists have developed extremely accurate ways of measuring calcium isotope ratios, for example for the study of sea shell deposits in sedimentary rocks.

Now a group of US geochemists, biologists and clinicians, from Arizona State University and the Mayo Clinic, have worked with NASA to put these techniques together to develop a new, rapid test of bone health.

These methods, using mass spectrometry, can discern the relative ratios of the calcium isotopes 42Ca and 44Ca in bone. The researchers found that lighter calcium isotopes, such as 42Ca, are absorbed from the blood into the bone during bone formation. Conversely, these light isotopes tend to be released into the bloodstream when bones break down. By measuring the ratios of the two isotopes in blood or urine scientists can calculate the rate of change of bone mass

According to lead researcher, Ariel Anbar(Arizona State University): "The big advantage of these measurements is that they show what is happening in the bone, whereas traditional bone health measurements, such as DXA scans, show what has happened. This means that we can have a real near-time view of what is happening in the bone, rather than comparing before and after, when damage may have already been done".

"Our goal is that these measurements will allow us to see bone breakdown in osteoporosis, but also can show us the progress of certain bone cancers, such as multiple myeloma".

The research was piloted in bed-bound subjects (who lose bone mass), but the best way for the researchers to test whether the system worked was in an ambient and less controlled population who are known to experience rapid bone loss.

In space, because of zero gravity conditions, astronauts experience very rapid bone loss. Working with NASA, the researchers measured calcium isotope ratios in urine from 30 shuttle astronauts, before, during, and after the flights. This allowed them to confirm that the test worked at high sensitivity (NASA partly funded the research).

Ariel Anbar said: "We were able to confirm that Ca isotopes of the shuttle shifted as expected, meaning that they we could see in more or less real time the ongoing bone loss. We did this using a simple urine sample, taken at various points during their flights".

The researchers have also looked at a group of 71 patients who either had multiple myeloma (bone cancer), or were at risk of multiple myeloma.

"What we saw with cancer patients was interesting. Those patients who tended to lose the lighter 42Ca isotope seemed to be the ones where the cancer was the most active. This means that the tests could theoretically feed into decisions on whether or not to treat a patient, for example if a cancer was dormant or growing very slowly, and to assess the effectiveness of treatments".

He continued "At the moment, this is still a test which is in development, but we have shown it can work. There is work to be done to further validate the tests, and costs to consider, however the advantage for this methodology is that the patient doesn't have to come to the machine; the measurements can be done with a blood or urine test. And from a scientific point of view, we are delighted that we have the chance to combine geochemistry, biology, and space science to benefit patients".

Commenting, Scott Parazynski, MD, former NASA astronaut, currently University Explorer and Professor at Arizona State University said: "It's tremendous to see a sophisticated geochemical assay being translated into what could become a really significant medical diagnostic tool. Physicians treating osteoporosis and other calcium disorders of bone, including multiple myeloma, have very few tools at their disposal to quickly determine whether the treatments they're providing are actually making a difference. By using calcium isotope ratios, healthcare providers may be able to optimize therapies for these debilitating illnesses in the future."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
European Association of Geochemistry
Space Medicine Technology and Systems






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SPACE MEDICINE
NSBRI seeks proposals to support space exploration mission crews
Houston TX (SPX) Aug 04, 2015
The National Space Biomedical Research Institute (NSBRI) is soliciting for ground-based and analog definition research proposals to develop safe and effective countermeasures and technologies that will reduce the significant biomedical risks associated with human space travel. These discoveries will not only enable safe and productive human spaceflight, but will also have the potential to ... read more


SPACE MEDICINE
LADEE spacecraft finds neon in lunar atmosphere

From a million miles away, NASA camera shows moon crossing face of Earth

Russia to conduct simulated flight program to Moon, Mars over 4 years

NASA Could Return Humans to the Moon by 2021

SPACE MEDICINE
How Much Contamination is Okay on Mars 2020 Rover?

One Decade after Launch, Mars Orbiter Still Going Strong

One Decade after Launch, Mars Orbiter Still Going Strong

Salt flat indicates some of the last vestiges of surface water on Mars

SPACE MEDICINE
Going Up! Elevator to Space Just Became Real

Orion Begins Critical Design Review Milestone

First Time Ever: ISS Crew Eats Food Grown in Outer Space

Gecko Grippers Moving On Up

SPACE MEDICINE
China's "sky eyes" help protect world heritage Angkor Wat

China's space exploration potential has US chasing its own tail

China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

SPACE MEDICINE
Electrical Glitch in US Sector of ISS Fixed

Stork Set to Make Special ISS Delivery

ULA to launch 2nd Cygnus spacecraft to ISS on Cargo Mission

First Use of ISS Astronaut Pictures for Light Pollution Studies

SPACE MEDICINE
Arianespace integrates EUTELSAT 8 West B and Intelsat 34 for Ariane 5 launch

NASA rocket launches UH's scientific payload into space

NASA selects contractor to prepare launch structure for SLS

ILS concludes Proton launch failure investigation

SPACE MEDICINE
Gemini-discovered world is most like Jupiter

Astronomers discover 'young Jupiter' exoplanet

Methane, water enshroud nearby Jupiter-like exoplanet

Tenth transiting 'Tatooine'

SPACE MEDICINE
Black phosphorus surges ahead of graphene

Researcher uses vibrations to identify materials' composition

Gaming fans resurrect beloved 1980s ZX Spectrum in UK

Scientists achieve major breakthrough in thin-film magnetism




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.