Subscribe free to our newsletters via your
. 24/7 Space News .




SOLAR SCIENCE
IRIS Provides Unprecedented Images of Sun
by Karen C. Fox for Goddard Space Flight Center
Greenbelt MD (SPX) Dec 13, 2013


The fine detail in images of prominences in the sun's atmosphere from NASA's Interface Region Imaging Spectrometer - such as the red swirls shown here - are challenging the way scientists understand such events. Image Credit: NASA/LMSAL/IRIS. For a larger version of this image please go here.

The region located between the surface of the sun and its atmosphere has been revealed as a more violent place than previously understood, according to images and data from NASA's newest solar observatory, the Interface Region Imaging Spectrograph, or IRIS.

Solar observatories look at the sun in layers. By capturing light emitted by atoms of different temperatures, they can focus in on different heights above the sun's surface extending well out into the solar atmosphere, the corona. On June 27, 2013, IRIS, was launched, to study what's known as the interface region - a layer between the sun's surface and corona that previously was not well observed.

Over its first six months, IRIS has thrilled scientists with detailed images of the interface region, finding even more turbulence and complexity than expected. IRIS scientists presented the mission's early observations at a press conference at the Fall American Geophysical Union meeting on Dec. 9, 2013.

"The quality of images and spectra we are receiving from IRIS is amazing," said Alan Title, IRIS principal investigator at Lockheed Martin in Palo Alto, Calif. "And we're getting this kind of quality from a smaller, less expensive mission, which took only 44 months to build."

For the first time, IRIS is making it possible to study the explosive phenomena in the interface region in sufficient detail to determine their role in heating the outer solar atmosphere. The mission's observations also open a new window into the dynamics of the low solar atmosphere that play a pivotal role in accelerating the solar wind and driving solar eruptive events.

Tracking the complex processes in the interface region requires instrument and modeling capabilities that are only now within our technological reach. IRIS captures both images and what's known as spectra, which display how much of any given wavelength of light is present. This, in turn, corresponds to how much material in the solar atmosphere is present at specific velocities, temperatures and densities. IRIS's success is due not only to its high spatial and temporal resolution, but also because of parallel development of advanced computer models. The combined images and spectra have provided new imagery of a region that was always known to be dynamic, but shows it to be even more violent and turbulent than imagined.

"We are seeing rich and unprecedented images of violent events in which gases are accelerated to very high velocities while being rapidly heated to hundreds of thousands of degrees," said Bart De Pontieu, the IRIS science lead at Lockheed Martin. "These types of observations present significant challenges to current theoretical models."

DePontieu has been culling images of two particular types of events on the sun that have long been interesting to scientists. One is known as a prominence, which are cool regions within the interface region that appear as giant loops of solar material rising up above the solar surface. When these prominences erupt they lead to solar storms that can reach Earth. IRIS shows highly dynamic and finely structured flows sweeping throughout the prominence.

The second type of event is called a spicule, which are giant fountains of gas - as wide as a state and as long as Earth - that zoom up from the sun's surface at 150,000 miles per hour. Spicules may play a role in distributing heat and energy up into the sun's atmosphere, the corona. IRIS imaging and spectral data allows us to see at high resolution, for the first time, how the spicules evolve. In both cases, observations are more complex than what existing theoretical models predicted.

"We see discrepancies between these observations and the models and that is great news for advancing knowledge," said Mats Carlsson, an astrophysicist at the University of Oslo in Norway. "By seeing something we don't understand we have a chance of learning something new."

Carlsson helps support the crucial computer model component of IRIS' observations. The computer models require an intense amount of power. Modeling just an hour of events on the sun can take several months of computer time. IRIS relies on supercomputers at NASA's Ames Research Center in Moffett Field, Calif., the Norwegian supercomputer collaboration and the Partnership for Advanced Computing in Europe.

Such computer models had helped design the IRIS instruments by providing a basis for the instrument performance requirements. Currently, they are used for analysis of IRIS data, as they represent the state of knowledge about what scientists understand about the interface region. By comparing models with actual observations, researchers figure out where the models fail, and therefore where the current state of knowledge is not complete.

By filling in these gaps, IRIS observations are helping round out our images of the solar atmosphere. The Japanese Aerospace Exploration Agency/NASA Hinode mission provides detailed imagery of the solar surface. NASA's Solar Dynamics Observatory offers imagery of what's higher up in the corona. Now, IRIS provides unprecedented information about the crucial layer in between, to finally help us understand how energy moves through the lower levels of the solar atmosphere driving the solar wind and heating the corona.

.


Related Links
IRIS at NASA
Solar Science News at SpaceDaily






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








SOLAR SCIENCE
Image of sun shows two areas of sunspots, one arriving and one leaving
Greenbelt, Md. (UPI) Nov 15, 2013
NASA has released an image of the sun showing two sunspots - one "coming" and one "going" - both the size of Jupiter, astronomers say. One, dubbed active region 1890, produced considerable solar activity in the past weeks including several mid-sized and significant flares, but has almost rotated off completely and will soon be out of sight from Earth, they said. The newer activ ... read more


SOLAR SCIENCE
Ancient crater could hold clues about moon's mantle

Minerals in giant impact crater may be clues to moon's makeup, origin

Silent Orbit for China's Moon Lander

China's most moon-like place

SOLAR SCIENCE
The Tough Task of Finding Fossils While Wearing a Spacesuit

Mars One Selects Lockheed Martin to Study First Private Unmanned Mission to Mars

SSTL selected for first private Mars mission

NASA Curiosity: First Mars Age Measurement and Human Exploration Help

SOLAR SCIENCE
Quails in orbit: French cuisine aims for the stars

Heat Shield for NASA's Orion Spacecraft Arrives at Kennedy Space Center

Space exploration can drive the next agricultural revolution

Global patent growth hits 18-year high

SOLAR SCIENCE
Chang'e-3 probe moves closer to the moon

China's first lunar rover lands on moon: State TV

China moon rover enters lunar orbit: Xinhua

Turkey keen on space cooperation with China

SOLAR SCIENCE
NASA reports coolant loop problem at ISS

Space station cooling breakdown may delay Orbital launch

New crew to run space station in March

Russian android may take on outer space operations at ISS

SOLAR SCIENCE
Russian Official Plays Down Concerns on Future of Proton

The ABS-2 and Athena-Fidus satellites for launch by Ariane 5 are welcomed in French Guiana

Arianespace to launch Brazilian government satellite SGDC

Kazakhstan to end Proton missions in 2025

SOLAR SCIENCE
Feature of Earth's atmosphere may help in search for habitable planets

Astronomers discover planet that shouldn't be there

Hot Jupiters Highlight Challenges in the Search for Life Beyond Earth

Astronomers find strange planet orbiting where there shouldn't be one

SOLAR SCIENCE
Citrus fruit inspires a new energy-absorbing metal structure

Intense 2-color double X-ray laser pulses: a powerful tool to study ultrafast processes

Highly insulating windows are very energy efficient, though expensive

Silver corrosion provides clues about performance in atmospheric conditions




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement