Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Hydrogen sulfide loses its electrical resistance under high pressure at -70C
by Staff Writers
Mainz, Germany (SPX) Aug 20, 2015


The Mainz-based researchers press the metal cell with Allen screws together to generate extremely high pressures. Only diamonds can resist the high pressure thus created in the center of the cell. The gems operate like anvils that compress a sample. Image courtesy Thomas Hartmann. For a larger version of this image please go here.

Researchers at the Max Planck Institute for Chemistry in Mainz and Johannes Gutenberg University Mainz in Germany observed that hydrogen sulfide becomes superconductive at minus 70 degree Celsius - when the substance is placed under a pressure of 1.5 million bar. This corresponds to half of the pressure of the earth's core.

With their high-pressure experiments the researchers in Mainz have thus not only set a new record for superconductivity, their findings have also highlighted a potential new way to transport current at room temperature with no loss. Their scientific paper "Conventional superconductivity at 203 K at high pressures" was published in the journal Nature on August 17, 2015.

For many solid-state physicists, superconductors that are suitable for use at room temperature are still a dream. Up to now, the only materials known to conduct current with no electrical resistance and thus no loss did so only at very low temperatures. Accordingly, special copper oxide ceramics, so-called cuprates, took the leading positions in terms of transition temperature, i.e., the temperature at which the material loses its resistance.

The record for a ceramic of this type is roughly minus 140 degrees Celsius at normal air pressure and minus 109 degrees Celsius at high pressure. In the ceramics, a special, unconventional form of superconductivity occurs. For conventional superconductivity, temperatures of at least minus 234 degrees Celsius have so far been necessary.

A team led by Dr. Mikhael Eremets, head of the working group "High pressure chemistry and physics" at the Max Planck Institute for Chemistry, working in collaboration with Dr. Vadim Ksenofontov und Sergii Shylin of the Institute of Inorganic Chemistry and Analytical Chemistry at Johannes Gutenberg University Mainz has now observed conventional superconductivity at minus 70 degrees Celsius in hydrogen sulfide (H2S).

To convert the substance, which is a gas under normal conditions, into a superconducting metal the scientists did however have to subject it to a pressure of 1.5 megabar or 1.5 million bar.

"With our experiments we have set a new record for the temperature at which a material becomes superconductive," said Dr. Mikhael Eremets. His team has also been the first to prove in an experiment that there are conventional superconductors with a high transition temperature. Theoretical calculations had already predicted this for certain substances including hydrogen sulfide.

"There is a lot of potential in looking for other materials in which conventional superconductivity occurs at high temperatures," emphasized the physicist. "There is theoretically no limit for the transition temperature of conventional superconductors, and our experiments give reason to hope that superconductivity can even occur at room temperature."

The researchers generated the extremely high pressure required to make hydrogen sulfide superconductive at comparatively moderate negative temperatures in a special pressure chamber smaller than one cubic centimeter in size. The two diamond tips on the side, which act as anvils, are able to constantly increase the pressure that the sample is subjected to.

The cell is equipped with contacts to measure the electrical resistance of the sample. In another high-pressure cell, the researchers were able to investigate the magnetic properties of a material that also change at the transition temperature. After the researchers had filled the pressure chamber with liquid hydrogen sulfide, they increased the pressure acting on the sample gradually up to roughly two megabar and changed the temperature for each pressure level.

They took measurements of both resistance and magnetization to determine the material's transition temperature. The magnetization measurements provide very useful information, because a superconductor possesses ideal diamagnetic properties.

Dr. Vadim Ksenofontov and Sergii Shylin of the Institute of Inorganic Chemistry and Analytical Chemistry at Mainz University were thus able to produce evidence that the mechanism used can be described as conventional superconductivity. They conducted magnetic high-pressure analyses to measure the Meissner effect. For this experiment they developed special high-pressure cells that allow to determine specific parameters in the magnetic field with great accuracy.

The researchers believe that it is mainly hydrogen atoms that are responsible for hydrogen sulfide losing its electrical resistance under high pressure at relatively high temperatures: Hydrogen atoms oscillate in the lattice with the highest frequency of all elements, because hydrogen is the lightest.

As the oscillations of the lattice determine the conventional superconductivity - and do this more effectively the faster the atoms oscillate - materials with high hydrogen content exhibit a relatively high transition temperature. In addition, strong bonds between the atoms increase the temperature at which a material becomes superconducting. These conditions are met in H3S, and it is precisely this compound that develops from H2S at high pressure.

The Mainz-based researchers are now looking for materials with even higher transition temperatures. Increasing the pressure acting on the hydrogen sulfide above 1.5 megabar is not helpful in this case. This has not only been calculated by theoretical physicists, but now also confirmed in experiments performed by the team in Mainz. At even higher temperatures the electron structure changes in such a way that the transition temperature begins to decrease. "An obvious candidate for a high transition temperature is pure hydrogen," said Eremets.

"It is expected that it would become superconductive at room temperature under high pressure." His team has already begun experimenting with pure hydrogen, but the experiments are very difficult as they require pressures of three to four megabar.

"Our research into hydrogen sulfide has, however, shown that many hydrogen-rich materials can have a high transition temperature," summarized Eremets. It may even be possible to realize a high-temperature superconductor worth the name in terms of common temperature perception without high pressure. The researchers in Mainz currently need the high pressure to convert materials that act electrically insulating like hydrogen sulfide into metals.

"There may be polymers or other hydrogen-rich compounds that can be converted to metals in some other way and become superconductive at room temperature," said the physicist. If such materials can be found, we would finally have superconductors that can be used for a wide range of technical applications.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Johannes Gutenberg Universitaet Mainz
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Breakthrough optics pave way for new class of intriguing technologies
Washington DC (SPX) Aug 19, 2015
A new class of fascinating technologies - including optics in computing, telecommunications links and switches, and virtually any other optical component - could be created simply by configuring a mesh of light-controlling devices known as interferometers. This is similar to the way electronic semiconductors can fashion the wide array of digital technologies we have at our disposal today. ... read more


TECH SPACE
LADEE spacecraft finds neon in lunar atmosphere

Crowdfunding raises $720,000 to restore Neil Armstrong spacesuit

Japanese Company to Advertise Soft Drink on Moon

From a million miles away, NASA camera shows moon crossing face of Earth

TECH SPACE
NASA can send your name to Mars

How Much Contamination is Okay on Mars 2020 Rover?

One Decade after Launch, Mars Orbiter Still Going Strong

One Decade after Launch, Mars Orbiter Still Going Strong

TECH SPACE
Springer retracts 64 scientific papers with fake peer reviews

Going Up! Elevator to Space Just Became Real

Orion Begins Critical Design Review Milestone

First Time Ever: ISS Crew Eats Food Grown in Outer Space

TECH SPACE
China's space exploration potential has US chasing its own tail

China to deploy space-air-ground sensors for environment protection

Chinese earth station is for exclusively scientific and civilian purposes

Cooperation in satellite technology put Belgium, China to forefront

TECH SPACE
Stork Set to Make Special ISS Delivery

ULA to launch 2nd Cygnus spacecraft to ISS on Cargo Mission

Electrical Glitch in US Sector of ISS Fixed

First Use of ISS Astronaut Pictures for Light Pollution Studies

TECH SPACE
Arianespace integrates EUTELSAT 8 West B and Intelsat 34 for Ariane 5 launch

EUTELSAT 8 West B and Intelsat 34 set for Ariane 5 launch

NASA rocket launches UH's scientific payload into space

NASA selects contractor to prepare launch structure for SLS

TECH SPACE
Solar System formation don't mean a thing without that spin

Gemini-discovered world is most like Jupiter

Methane, water enshroud nearby Jupiter-like exoplanet

Astronomers discover 'young Jupiter' exoplanet

TECH SPACE
The unbearable lightness of helium may not be such a problem after all

Programming and prejudice

Laser-burned graphene gains metallic powers

Small, cheap femtosecond laser for industry available




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.