. 24/7 Space News .
TIME AND SPACE
Hubble measurements suggest disparity in Hubble constant calculations is not a fluke
by Staff Writers
Munich, Germany (SPX) Apr 26, 2019

Various scenarios have been proposed to explain the discrepancy, but there is yet to be a conclusive answer. An invisible form of matter called dark matter may interact more strongly with normal matter than astronomers previously thought. Or perhaps dark energy, an unknown form of energy that pervades space, is responsible for accelerating the expansion of the Universe.

Hubble's measurements of today's expansion rate do not match the rate that was expected based on how the Universe appeared shortly after the Big Bang over 13 billion years ago. Using new data from the NASA/ESA Hubble Space Telescope, astronomers have significantly lowered the possibility that this discrepancy is a fluke.

Using new observations from the NASA/ESA Hubble Space Telescope, researchers have improved the foundations of the cosmic distance ladder, which is used to calculate accurate distances to nearby galaxies. This was done by observing pulsating stars called Cepheid variables in a neighbouring satellite galaxy known as the Large Magellanic Cloud, now calculated to be 162,000 light-years away.

When defining the distances to galaxies that are further and further away, these Cepheid variables are used as milepost markers. Researchers use these measurements to determine how fast the Universe is expanding over time, a value known as the Hubble constant.

Before Hubble was launched in 1990, estimates of the Hubble constant varied by a factor of two. In the late 1990s the Hubble Space Telescope Key Project on the Extragalactic Distance Scale refined the value of the Hubble constant to within 10 percent, accomplishing one of the telescope's key goals.

n 2016, astronomers using Hubble discovered that the Universe is expanding between five and nine percent faster than previously calculated by refining the measurement of the Hubble constant and further reducing the uncertainty to only 2.4 percent.

In 2017, an independent measurement supported these results. This latest research has reduced the uncertainty in their Hubble constant value to an unprecedented 1.9 percent.

This research also suggests that the likelihood that this discrepancy between measurements of today's expansion rate of the Universe and the expected value based on the early Universe's expansion is a fluke is just 1 in 100,000, a significant improvement from a previous estimate last year of 1 in 3,000.

"The Hubble tension between the early and late Universe may be the most exciting development in cosmology in decades," said lead researcher and Nobel Laureate Adam Riess of the Space Telescope Science Institute (STScI) and Johns Hopkins University, in Baltimore, USA. "This mismatch has been growing and has now reached a point that is really impossible to dismiss as a fluke. This disparity could not plausibly occur by chance."

As the team's measurements have become more precise, their calculation of the Hubble constant has remained inconsistent with the expected value derived from observations of the early Universe's expansion made by the European Space Agency's Planck satellite.

These measurements map a remnant afterglow from the Big Bang known as the Cosmic Microwave Background, which help scientists to predict how the early Universe would likely have evolved into the expansion rate astronomers can measure today.

The new estimate of the Hubble constant is 74.03 kilometres per second per megaparsec [1]. The number indicates that the Universe is expanding at a rate about 9 percent faster than that implied by Planck's observations of the early Universe, which give a value for the Hubble constant of 67.4 kilometres per second per megaparsec.

To reach this conclusion, Riess and his team analysed the light from 70 Cepheid variables in the Large Magellanic Cloud. Because these stars brighten and dim at predictable rates, and the periods of these variations give us their luminosity and hence distance, astronomers use them as cosmic mileposts.

Riess's team used an efficient observing technique called Drift And Shift (DASH) using Hubble as a "point-and-shoot" camera to snap quick images of the bright stars. This avoids the more time-consuming step of anchoring the telescope with guide stars to observe each star.

The results were combined with observations made by the Araucaria Project, a collaboration between astronomers from institutions in Europe, Chile, and the United States, to measure the distance to the Large Magellanic Cloud by observing the dimming of light as one star passes in front of its partner in a binary-star system.

Because cosmological models suggest that observed values of the expansion of the Universe should be the same as those determined from the Cosmic Microwave Background, new physics may be needed to explain the disparity. "Previously, theorists would say to me, 'it can't be. It's going to break everything.' Now they are saying, 'we actually could do this,'" Riess said.

Various scenarios have been proposed to explain the discrepancy, but there is yet to be a conclusive answer. An invisible form of matter called dark matter may interact more strongly with normal matter than astronomers previously thought. Or perhaps dark energy, an unknown form of energy that pervades space, is responsible for accelerating the expansion of the Universe.

Although Riess does not have an answer to this perplexing disparity, he and his team intend to continue using Hubble to reduce the uncertainty in their measure of the Hubble constant, which they hope to decrease to 1 percent.

Research paper


Related Links
ESA/Hubble Information Centre
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Searching for disappeared anti-matter
Munich, Germany (SPX) Mar 27, 2019
The Belle II detector got off to a successful start in Japan. Since March 25, 2019, the instrument has been measuring the first particle collisions, which are generated in the modernized SuperKEKB accelerator. The new duo produces more than 50 times the number of collisions compared to its predecessor. The huge increase in evaluable data means that there is not a greater chance of finding out why there is an imbalance between matter and anti-matter in the Universe. In the Belle II experiment, elec ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
New concept for novel fire extinguisher in space

Music for space

NASA astronaut to set record for longest spaceflight by a woman

Multiple regenerative medicine payloads ready for ISS study

TIME AND SPACE
SpaceX to launch cargo resupply mission despite Crew Dragon mishap

NASA accelerates pace of Core Stage production with new tool

Roscosmos, S7 Group Mull Developing Reusable Commercial Space Vehicle

Russia Developing Launch Vehicles Similar to Falcon Heavy - Deputy PM

TIME AND SPACE
InSight lander captures audio of first likely 'quake' on Mars

All-woman engineering team heads to NASA Mars competition

A small step for China: Mars base for teens opens in desert

Things Are Stacking Up for NASA's Mars 2020 Spacecraft

TIME AND SPACE
China to build moon station in 'about 10 years'

China opens Chang'e-6 for international payloads, asteroids next

China to enhance international space cooperation

China's commercial carrier rocket finishes engine test

TIME AND SPACE
The Third Installment of the SpaceFund Reality (SFR) rating

Iridium Awarded Gateway Support and Maintenance Contract by the U.S. Department of Defense

ESA opening up to new ideas

Canadian Space Agency Sees Science Cooperation With Russia as Area of Growth

TIME AND SPACE
Modified 'white graphene' for eco-friendly energy

RIT researcher collaborates with UR to develop new form of laser for sound

UNH scientists find auroral 'speed bumps' are more complicated

Debris of Satellite Destroyed by India May Threaten ISS - Russian MoD

TIME AND SPACE
Oil-eating bacteria found at the bottom of the ocean

Slime mold memorizes foreign substances by absorbing them

Necrophagy: A means of survival in the Dead Sea

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

TIME AND SPACE
Public Invited to Help Name Solar System's Largest Unnamed World

Europa Clipper High-Gain Antenna Undergoes Testing

Scientists to Conduct Largest-Ever Hubble Survey of the Kuiper Belt

Jupiter's unknown journey revealed









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.