Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
Hubble Discovers That Milky Way Core Drives Wind At 2 Million Miles Per Hour
by Staff Writers
Baltimore MD (SPX) Jan 06, 2015


This graphic shows how NASA's Hubble Space Telescope probed the light from a distant quasar to analyze the so-called Fermi Bubbles, two lobes of material being blown out of the core of our Milky Way galaxy. The quasar's light passed through one of the bubbles. Imprinted on that light is information about the outflow's speed, composition, and eventually mass. The outflow was produced by a violent event that happened about 2 million years ago in our galaxy's core. Image courtesy NASA, ESA, and A. Feild (STScI). For a larger version of this image please go here.

At a time when our earliest human ancestors had recently mastered walking upright, the heart of our Milky Way galaxy underwent a titanic eruption, driving gases and other material outward at 2 million miles per hour.

Now, at least 2 million years later, astronomers are witnessing the aftermath of the explosion: billowing clouds of gas towering about 30,000 light-years above and below the plane of our galaxy.

The enormous structure was discovered five years ago as a gamma-ray glow on the sky in the direction of the galactic center. The balloon-like features have since been observed in X-rays and radio waves. But astronomers needed NASA's Hubble Space Telescope to measure for the first time the velocity and composition of the mystery lobes. They now seek to calculate the mass of the material being blown out of our galaxy, which could lead them to determine the outburst's cause from several competing scenarios.

Astronomers have proposed two possible origins for the bipolar lobes: a firestorm of star birth at the Milky Way's center or the eruption of its supermassive black hole. Although astronomers have seen gaseous winds, composed of streams of charged particles, emanating from the cores of other galaxies, they are getting a unique, close-up view of our galaxy's own fireworks.

"When you look at the centers of other galaxies, the outflows appear much smaller because the galaxies are farther away," said Andrew Fox of the Space Telescope Science Institute in Baltimore, Maryland, lead researcher of the study. "But the outflowing clouds we're seeing are only 25,000 light-years away in our galaxy. We have a front-row seat. We can study the details of these structures. We can look at how big the bubbles are and can measure how much of the sky they are covering."

Fox's results will be published in the Astrophysical Journal Letters [preprint: http://arxiv.org/abs/1412.1480] and will be presented at the American Astronomical Society meeting in Seattle, Washington.

The giant lobes, dubbed Fermi bubbles, initially were spotted using NASA's Fermi Gamma-ray Space Telescope. The detection of high-energy gamma rays suggested that a violent event in the galaxy's core aggressively launched energized gas into space. To provide more information about the outflows, Fox used Hubble's Cosmic Origins Spectrograph (COS) to probe the ultraviolet light from a distant quasar that lies behind the base of the northern bubble. Imprinted on that light as it travels through the lobe is information about the velocity, composition, and temperature of the expanding gas inside the bubble, which only COS can provide.

Fox's team was able to measure that the gas on the near side of the bubble is moving toward Earth and the gas on the far side is travelling away. COS spectra show that the gas is rushing from the galactic center at roughly 2 million miles an hour (3 million kilometers an hour).

"This is exactly the signature we knew we would get if this was a bipolar outflow," explained Rongmon Bordoloi of the Space Telescope Science Institute, a co-author on the science paper. "This is the closest sightline we have to the galaxy's center where we can see the bubble being blown outward and energized."

The COS observations also measure, for the first time, the composition of the material being swept up in the gaseous cloud. COS detected silicon, carbon, and aluminum, indicating that the gas is enriched in the heavy elements produced inside stars and represents the fossil remnants of star formation.

COS measured the temperature of the gas at approximately 17,500 degrees Fahrenheit, which is much cooler than most of the super-hot gas in the outflow, thought to be at about 18 million degrees Fahrenheit. "We are seeing cooler gas, perhaps interstellar gas in our galaxy's disk, being swept up into that hot outflow," Fox explained.

This is the first result in a survey of 20 faraway quasars whose light passes through gas inside or just outside the Fermi bubbles - like a needle piercing a balloon. An analysis of the full sample will yield the amount of mass being ejected. The astronomers can then compare the outflow mass with the velocities at various locations in the bubbles to determine the amount of energy needed to drive the outburst and possibly the origin of the explosive event.

One possible cause for the outflows is a star-making frenzy near the galactic center that produces supernovas, which blow out gas. Another scenario is a star or a group of stars falling onto the Milky Way's supermassive black hole. When that happens, gas superheated by the black hole blasts deep into space. Because the bubbles are short-lived compared to the age of our galaxy, it suggests this may be a repeating phenomenon in the Milky Way's history. Whatever the trigger is, it likely occurs episodically, perhaps only when the black hole gobbles up a concentration of material.

"It looks like the outflows are a hiccup," Fox said. "There may have been repeated ejections of material that have blown up, and we're catching the latest one. By studying the light from the other quasars in our program, we may be able to detect the fossils of previous outflows."

Galactic winds are common in star-forming galaxies, such as M82, which is furiously making stars in its core. "It looks like there's a link between the amount of star formation and whether or not these outflows happen," Fox said. "Although the Milky Way overall currently produces a moderate one to two stars a year, there is a high concentration of star formation close to the core of the galaxy."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Hubble at NASA
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Milky Way has new neighbor, KKs3
Nizhny Arkhyz, Russia (UPI) Dec 23, 2014
The Milky Way galaxy has a new cosmic neighbor - galaxy KKs3 - discovered thanks to newly collected data courtesy of NASA's Hubble Space Telescope. The dwarf spheroidal galaxy lies 700 million miles away and is located in the southern sky in vicinity of the constellation Hydrus. It's only the second known isolated dwarf spheroidal galaxy in the Local Group, a collection of some 54 gal ... read more


STELLAR CHEMISTRY
Chinese spacecraft to return to moon's orbit

Russian Company Proposes to Build Lunar Base

'Shooting the Moon' with Satellite Laser Ranging

Moon Express testing compact lunar lander at Kennedy

STELLAR CHEMISTRY
Russian space medic who led Mars experiment dies at 64

Inflatable 'Donut' to Bring Astronauts to Mars

New analyses suggests water binds to sulfates in Martian soil

Isro's Mangalyaan Completes 100 Days in Mars Orbit

STELLAR CHEMISTRY
Global tech spending sputters amid economic woes

Electronics show a window into the 'Internet of Me'

NASA exploring inflatable spacecraft designs for future Mars missions

NASA Statement on GAO Decision to Deny Commercial Crew Contract Protest

STELLAR CHEMISTRY
China launches the FY-2 08 meteorological satellite successfully

China's Long March puts satellite in orbit on 200th launch

Countdown to China's new space programs begins

China develops new rocket for manned moon mission: media

STELLAR CHEMISTRY
Astronaut feels the force

Student Scientists Persevere, Ready to Launch Experiments to Space Station

ISS Crew to Raise Toasts for New Year's Eve 16 Times

The worst trip around the world

STELLAR CHEMISTRY
SpaceX aborts launch of Falcon 9 on landmark rocket test

Arianespace confident current and future launcher family will meet needs

Rocket glitch forces SpaceX to abort landmark launch

Elon Musk divorces actress wife Talulah Riley

STELLAR CHEMISTRY
Eight new planets found in 'Goldilocks' zone

Gemini Planet Imager produces stunning observations in its first year

Volunteer 'Disk Detectives' Classify Possible Planetary Habitats

Kepler Marks 1,000th Exoplanet Discovery

STELLAR CHEMISTRY
Electromagnetic waves linked to particle fallout in Earth's atmosphere

A repulsive material

Freshmen-level chemistry solves the solubility mystery of graphene oxide films

South Korean Satellite Faces Collision With Space Junk: Reports




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.