. 24/7 Space News .
STELLAR CHEMISTRY
How we created a mini 'gamma ray burst' in the lab for the first time
by Gianluca Sarri for The Conversation UK
London, UK (The Conversation) Jan 19, 2018


File illustration

Gamma ray bursts, intense explosions of light, are the brightest events ever observed in the universe - lasting no longer than seconds or minutes. Some are so luminous that they can be observed with the naked eye, such as the burst "GRB 080319B" discovered by NASA's Swift GRB Explorer mission on March 19, 2008.

But despite the fact that they are so intense, scientists don't really know what causes gamma ray bursts. There are even people who believe some of them might be messages sent from advanced alien civilisations. Now we have for the first time managed to recreate a mini version of a gamma ray burst in the laboratory - opening up a whole new way to investigate their properties. Our research is published in Physical Review Letters.

One idea for the origin of gamma ray bursts is that they are somehow emitted during the emission of jets of particles released by massive astrophysical objects, such as black holes. This makes gamma ray bursts extremely interesting to astrophysicists - their detailed study can unveil some key properties of the black holes they originate from.

The beams released by the black holes would be mostly composed of electrons and their "antimatter" companions, the positrons - all particle have antimatter counterparts that are exactly identical to themselves, only with opposite charge. These beams must have strong, self-generated magnetic fields. The rotation of these particles around the fields give off powerful bursts of gamma ray radiation. Or, at least, this is what our theories predict. But we don't actually know how the fields would be generated.

Unfortunately, there are a couple of problems in studying these bursts. Not only do they last for short periods of time but, most problematically, they are originated in distant galaxies, sometimes even billion light years from Earth (imagine a one followed by 25 zeroes - this is basically what one billion light years is in metres).

That means you rely on looking at something unbelievably far away that happens at random, and lasts only for few seconds. It is a bit like understanding what a candle is made of, by only having glimpses of candles being lit up from time to time thousands of kilometres from you.

World's most powerful laser
It has been recently proposed that the best way to work out how gamma ray bursts are produced would be by mimicking them in small-scale reproductions in the laboratory - reproducing a little source of these electron-positron beams and look at how they evolve when left on their own. Our group and our collaborators from the US, France, UK, and Sweden, recently succeeded in creating the first small-scale replica of this phenomenon by using one of the most intense lasers on Earth, the Gemini laser, hosted by the Rutherford Appleton Laboratory in the UK.

How intense is the most intense laser on Earth? Take all the solar power that hits the whole Earth and squeeze it into a few microns (basically the thickness of a human hair) and you have got the intensity of a typical laser shot in Gemini. Shooting this laser onto a complex target, we were able to release ultra-fast and dense copies of these astrophysical jets and make ultra-fast movies of how they behave. The scaling down of these experiments is dramatic: take a real jet that extends even for thousands of light years and compress it down to a few millimetres.

In our experiment, we were able to observe, for the first time, some of the key phenomena that play a major role in the generation of gamma ray bursts, such as the self-generation of magnetic fields that lasted for a long time. These were able to confirm some major theoretical predictions of the strength and distribution of these fields. In short, our experiment independently confirms that the models currently used to understand gamma ray bursts are on the right track.

The experiment is not only important for studying gamma ray bursts. Matter made only of electrons and positrons is an extremely peculiar state of matter. Normal matter on Earth is predominantly made of atoms: a heavy positive nucleus surrounded by clouds of light and negative electrons.

Due to the incredible difference in weight between these two components (the lightest nucleus weighs 1836 times the electron) almost all the phenomena we experience in our everyday life comes from the dynamics of electrons, which are much quicker in responding to any external input (light, other particles, magnetic fields, you name it) than nuclei. But in an electron-positron beam, both particles have exactly the same mass, meaning that this disparity in reaction times is completely obliterated. This brings to a quantity of fascinating consequences. For example, sound would not exist in an electron-positron world.

So far so good, but why should we care so much about events that are so distant? There are multiple reasons indeed. First, understanding how gamma ray bursts are formed will allow us to understand a lot more about black holes and thus open a big window on how our universe was born and how it will evolve.

But there is a more subtle reason. SETI - Search for Extra-Terrestrial Intelligence - looks for messages from alien civilisations by trying to capture electromagnetic signals from space that cannot be explained naturally (it focuses mainly on radio waves, but gamma ray bursts are associated with such radiation too).

Of course, if you put your detector to look for emissions from space, you do get an awful lot of different signals. If you really want to isolate intelligent transmissions, you first need to make sure all the natural emissions are perfectly known so that they can excluded. Our study helps towards understanding black hole and pulsar emissions, so that, whenever we detect anything similar, we know that it is not coming from an alien civilisation.

The Conversation

STELLAR CHEMISTRY
Scientific achievements during the operation of Lomonosov satellite
Moscow, Russia (SPX) Dec 18, 2017
The Lomonosov Project is a large-scale scientific and educational space project of Lomonosov Moscow State University aimed at studying space phenomena. In the course of operation of Lomonosov satellite on the orbit the team of Skobeltsyn Scientific and Research Institute of Nuclear Physics, MSU received new data on many understudied physical phenomena both in the Universe and in the atmosp ... read more

Related Links
Queen's University Belfast
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
S. Korea's Chinese tourist slump endures despite pledges

Europe brings on charm and blue skies to lure Chinese tourists

Chinese, Russians shore up Middle East tourism

Life-saving NASA Communications System Turns 20

STELLAR CHEMISTRY
Aerojet Rocketdyne Supports ULA Launch in Support of National Security

Update from Mojave: VSS Unity successfully completes high speed glide flight

India launches country's 100th satellite and 30 microsats

Blue Origin tests rocket engine as US seeks to replace Russian RD-180

STELLAR CHEMISTRY
Deep, buried glaciers spotted on Mars

Opportunity takes right at the fork and has successful battery test

Steep Slopes on Mars Reveal Structure of Buried Ice

Scientist's work may provide answer to Martian mountain mystery

STELLAR CHEMISTRY
Scientist reveals what is so special about Chines's next moon mission

China's Kuaizhou-11 rocket scheduled to launch in first half of 2018

Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

STELLAR CHEMISTRY
Xenesis and ATLAS partner to develop global optical network

GomSpace signs deal for low-inclination launch on Virgin's LauncherOne

SES-15 Enters Commercial Service to Serve the Americas

Aerospace Workforce Training - National Mandate for 2018

STELLAR CHEMISTRY
Quantum control

Self-healing fungi concrete could provide sustainable solution to crumbling infrastructure

Ultra-thin memory storage device paves way for more powerful computing

Physicists succeed in measuring mechanical properties of 2-D monolayer materials

STELLAR CHEMISTRY
NASA study shows disk patterns can self-generate

Hubble finds substellar objects in the Orion Nebula

Ingredients for life revealed in meteorites that fell to Earth

Citizen scientists discover five-planet system

STELLAR CHEMISTRY
JUICE ground control gets green light to start development

New Year 2019 offers new horizons at MU69 flyby

Study explains why Jupiter's jet stream reverses course on a predictable schedule

New Horizons Corrects Its Course in the Kuiper Belt









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.