. 24/7 Space News .
TECH SPACE
How to store information in your clothes invisibly, without electronics
by Staff Writers
Seattle WA (SPX) Nov 02, 2017


Using magnetic properties of conductive thread, University of Washington researchers are able to store data in fabric. In this example, the code to unlock a door is stored in a fabric patch and read by an array of magnetometers.

A new type of smart fabric developed at the University of Washington could pave the way for jackets that store invisible passcodes and open the door to your apartment or office.

The UW computer scientists have created fabrics and fashion accessories that can store data - from security codes to identification tags - without needing any on-board electronics or sensors.

As described in a paper presented Oct. 25 at the Association for Computing Machinery's User Interface Software and Technology Symposium (UIST 2017), they leveraged previously unexplored magnetic properties of off-the-shelf conductive thread. The data can be read using an instrument embedded in existing smartphones to enable navigation apps.

"This is a completely electronic-free design, which means you can iron the smart fabric or put it in the washer and dryer," said senior author Shyam Gollakota, associate professor in the Paul G. Allen School of Computer Science and Engineering. "You can think of the fabric as a hard disk - you're actually doing this data storage on the clothes you're wearing."

Most people today combine conductive thread - embroidery thread that can carry an electrical current - with other types of electronics to create outfits, stuffed animals or accessories that light up or communicate.

But the UW researchers realized that this off-the-shelf conductive thread also has magnetic properties that can be manipulated to store either digital data or visual information like letters or numbers. This data can be read by a magnetometer, an inexpensive instrument that measures the direction and strength of magnetic fields and is embedded in most smartphones.

"We are using something that already exists on a smartphone and uses almost no power, so the cost of reading this type of data is negligible," said Gollakota. In one example, they stored the passcode to an electronic door lock on a patch of conductive fabric sewn to a shirt cuff. They unlocked the door by waving the cuff in front of an array of magnetometers.

The UW researchers also created fashion accessories like a tie, belt, necklace and wristband and decoded the data by swiping a smartphone across them.

They used conventional sewing machines to embroider fabric with off-the-shelf conductive thread, whose magnetic poles start out in a random order. By rubbing a magnet against the fabric, the researchers were able to physically align the poles in either a positive or negative direction, which can correspond to the 1s and 0s in digital data.

Like hotel card keys, the strength of the magnetic signal weakens by about 30 percent over the course of a week, though the fabric can be re-magnetized and re-programmed multiple times. In other stress tests, the fabric patch retained its data even after machine washing, drying and ironing at temperatures of up to 320 degrees Fahrenheit.

This is in contrast to many smart garments today that still require on-board electronics or sensors to work. That can be problematic if you get caught in the rain or forget to detach those electronics before throwing them in the washing machine - a potential barrier to widespread adoption of other wearable technology designs.

The team also demonstrated that the magnetized fabric could be used to interact with a smartphone while it is in one's pocket. Researchers developed a glove with conductive fabric sewn into its fingertips, which was used to gesture at the smartphone. Each gesture yields a different magnetic signal that can invoke specific actions like pausing or playing music.

"With this system, we can easily interact with smart devices without having to constantly take it out of our pockets," said lead author Justin Chan, an Allen School doctoral student.

In the team's tests, the phone was able to recognize six gestures - left flick, right flick, upward swipe, downward swipe, click and back click - with 90 percent accuracy. Future work is focused on developing custom textiles that generate stronger magnetic fields and are capable of storing a higher density of data.

TECH SPACE
Voltage-driven liquid metal fractals
Raleigh NC (SPX) Nov 02, 2017
Researchers from North Carolina State University have found that gallium indium (EGaIn), a liquid metal with one of the highest surface tensions, can be induced to spread and form patterns called fractals with the application of low voltage. The work has implications for controlling the shape of liquid metals. Surface tension is the force exerted by the surface of a liquid that causes it t ... read more

Related Links
University of Washington
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
How Does Your Space Garden Grow

NanoRacks Deploys Second Kaber-Class Microsatellite This Week, First On-Orbit Assembly

Saudi Arabia to invest $1 billion in Virgin Galactic

Scientist devises a solar reactor to make water and oxygen from moon rocks

TECH SPACE
Russia embezzlement probe at rocket firm Soyuz

Alaska Aerospace Launches Aurora Launch Services Company

Arianespace to launch Embratel Star One D2

What Ever Happened to Sea Launch?

TECH SPACE
Next Mars Rover Will Have 23 'Eyes'

In desert of Oman, a gateway to life on Mars

Winters leave marks on Mars' sand dunes

Winters on Mars are shaping the Red Planet's landscape

TECH SPACE
China's reusable spacecraft to be launched in 2020

Space will see Communist loyalty: Chinese astronaut

China launches three satellites

Mars probe to carry 13 types of payload on 2020 mission

TECH SPACE
New Chinese sat comms company awaits approval

Myanmar to launch own satellite system-2 in 2019: vice president

Eutelsat's Airbus-built full electric EUTELSAT 172B satellite reaches geostationary orbit

Turkey, Russia to Enhance Cooperation in the Field of Space Technologies

TECH SPACE
Liquids take a shine to terahertz radiation

Voltage-driven liquid metal fractals

Cancer cells destroyed with dinosaur extinction metal

Jellyfish-inspired electronic skin glows when it gets hurt

TECH SPACE
Overlooked Treasure: The First Evidence of Exoplanets

Scientists discover new type of deep-sea hunting called kleptopredation

'Monster' planet discovery challenges formation theory

One small doorstep for man: Cosmic mat welcomes aliens

TECH SPACE
Jupiter's X-ray auroras pulse independently

Haumea, the most peculiar of Pluto companions, has a ring around it

Ring around a dwarf planet detected

Helicopter test for Jupiter icy moons radar









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.