. 24/7 Space News .
How Long Does It Take To Rebuild Bone Lost During Space Flight

A Dual Energy X-ray Absorptiometry (DEXA) scan of a human hip bone, left, and a human spine, right. Credit: NASA
by Staff Writers
Washington DC (SPX) Feb 28, 2007
Are bigger bones stronger bones? Not necessarily, according to a recent NASA study that seeks to ensure healthy bones in astronauts. A four-year study of the long-term effects of microgravity on the bones of International Space Station crew members showed that the astronauts, on average, lost roughly 11 percent of their total hip bone mass over the course of their mission.

The study also found that a year after each crew member had returned to Earth, much of their lost bone mass was replaced. However, the bone structure and density had not returned to normal and signs of hip strength had not recovered at one year, although it had increased slightly compared to post-flight levels. Researchers say it could take much longer than a year to regain the lost strength.

The study's findings are important because bone loss during the course of a long transit to Mars and back could result in an increased risk of a bone fracture during activities on the Martian surface, or in the long term, back on Earth during the course of aging years after mission completion.

Data from the study showed that, on average, crewmembers lost as much bone mass in one month on orbit as an elderly woman loses in an entire year.

Doctors treat millions of women and men for osteoporosis -- a disease in which the bones atrophy causing loss of density, becoming more porous and breaking more easily.

Although healthy astronauts did not develop osteoporosis during their four- to six-month stays on the space station, the levels of bone loss documented were still enough to raise the concern for an increased risk for fracture when astronauts' skeletons are subjected to applied loads with working, lifting or falling.

"The success of human exploration missions depends on finding countermeasures to overcome such effects on crew members," said Julie Robinson, International Space Station program scientist at NASA's Johnson Space Center in Houston. "There are important synergies between osteoporosis research on Earth, and studies of bone loss and recovery in healthy astronauts in space. Each area of study complements the other."

The research, formally named the Subregional Bone Assessment, was one of the first Human Research Program investigations to be completed onboard the space station. The program manages human health experiments to understand and reduce health and performance risks to astronauts in space.

Beginning with Expedition 2, from March to August 2001, and continuing through Expedition 8, from October 2003 to April 2004, 16 crew members participated in the study. The research focused on their weight bearing bones including the hip bones because studies had shown that the hip experiences the highest amount of bone loss during a space mission and the hip is the site of the most devastating osteoporotic fractures in the elderly.

The astronauts' bones were measured before and after their mission and one year after their return to Earth. The principal investigator for the experiment, Dr. Thomas Lang of the University of California in San Francisco, used X-ray Quantitative Computed Tomography to characterize the recovery of parts of the hip bone and changes in size and strength of the bones.

The technique produces a series of cross-sectional images of the hip bone, allowing it to be quantified three-dimensionally without interference from overlying tissues.

Lang used the X-ray technology to examine separately the bone's dense outer, or cortical, layer and its spongy inner, or trabecular, layer to determine bone loss in the hip and spine. The three-dimensional tomography measurements allowed researchers to determine whether loss is more prominent in one of those bone subregions.

"There's evidence from studies of aging that bone size increases as a compensation for loss of bone mass. We hypothesized that something similar would occur when crew members were re-introduced to gravity after long-duration spaceflight," said Lang.

"Our one-year measurements were consistent with such an increase in bone size; however this increase in the bone may not have been enough to result in full recovery of the hip bone strength. We will continue to measure bone density to determine how much longer it takes to rebuild bone and bone strength, and whether these structural changes are permanent."

Email This Article

Related Links
Space Shuttle News at Space-Travel.Com
Space Medicine For The Space Age



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Researcher To Study Astronaut Bone Loss For Space Biology Agency
San Francisco CA (SPX) Feb 14, 2007
Roger K. Long, MD, an endocrinology research fellow at the San Francisco VA Medical Center and the University of California, San Francisco, was one of only three scientists named in January 2007 as 2006-2008 Postdoctoral Fellows by the National Space Biomedical Research Institute (NSBRI).







  • Late Noodle King Of Japan To Be Blasted Into Space
  • India Planning New Institute To Train Space Cadets
  • Grand Theft Pluto
  • Astronauts Urged To Take Up Skiing Ahead Of Lunar Missions

  • Sensor Being Developed To Check For Life On Mars
  • Where Is Beagle 2
  • First Test Of New Autonomous Capability On Mars Is Promising
  • Spirit Continues Driving While Engineers Check Robotic Arm

  • Hyundai To Build First South Korea Launch Pad
  • Construction Of Soyuz Launch Base In French Guiana Begins
  • Satellite Launcher Arianespace Seeks To Boost US Business
  • Iran Claims Of Satellite Launch Brought Down To Earth

  • ITT Passes Critical Design Review for GOES-R Advanced Baseline Imager
  • Scientists Gear Up For Envisat 2007 Symposium
  • Sandstorm Over The Mediterranean
  • 3D Upstart Eyes Google Earth With Helicopter

  • Defining Planets
  • Campaigning For Jupiter Broadens The Horizons Of Planetary Science
  • All Calm On Approach To Jupiter For Flyby
  • New Horizons SWAP Instrument Observes Solar Wind Interactions Before Jupiter Encounter

  • First X-Ray Detection Of A Colliding-Wind Binary Beyond Milky Way
  • New Observations Show Sun-Like Star In Earliest Stage Of Development
  • Spitzer First to Crack Open Light of Faraway Worlds
  • Peering Into The Pillars Of Creation

  • Camping On The Moon Will Be One Far Out Experience
  • Out-Of-This-World Ride In NASA's 14th Annual Great Moonbuggy Race
  • Why Are We Fighting For The Moon Again
  • AIAA Recommends Actions For Implementation Of Lunar Settlements

  • Malaysia Launches World's Smallest Microchip With Radio Chip
  • The Murky Ethics Of Implanted RFID Chips
  • Lockheed Martin Team Qualifies To Bid On First FAA Nextgen Program
  • GPS Upgrade Will Require Complicated Choreography

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement