Subscribe free to our newsletters via your
. 24/7 Space News .




TECH SPACE
Home Electrical Wiring Acts As Antenna To Receive Low-Power Sensor Data
by Staff Writers
Seattle WA (SPX) Sep 17, 2010


Sensors sprinkled throughout the home beam information at a set frequency. Wiring wrapped around the sensor acts as a broadcast antenna. The home's electrical wiring acts as the receiving antenna. Credit: Gabe Cohn, University of Washington

If these walls had ears, they might tell a homeowner some interesting things. Like when water is dripping into an attic crawl space, or where an open window is letting hot air escape during winter.

The walls do have ears, thanks to a device that uses a home's electrical wiring as a giant antenna. Sensors developed by researchers at the University of Washington and the Georgia Institute of Technology use residential wiring to transmit information to and from almost anywhere in the home, allowing for wireless sensors that run for decades on a single watch battery.

The technology, which could be used in home automation or medical monitoring, will be presented this month at the Ubiquitous Computing conference in Copenhagen, Denmark.

Low-cost sensors recording a building's temperature, humidity, light level or air quality are central to the concept of a smart, energy-efficient home that automatically adapts to its surroundings. But that concept has yet to become a reality.

"When you look at home sensing, and home automation in general, it hasn't really taken off," said principal investigator Shwetak Patel, a UW assistant professor of computer science and and of electrical engineering. "Existing technology is still power hungry, and not as easy to deploy as you would want it to be."

That's largely because today's wireless devices either transmit a signal only several feet, Patel said, or consume so much energy they need frequent battery replacements.

"Here, we can imagine this having an out-of-the-box experience where the device already has a battery in it, and it's ready to go and run for many years," Patel said. Users could easily sprinkle dozens of sensors throughout the home, even behind walls or in hard-to-reach places like attics or crawl spaces.

Patel's team has devised a way to use copper electrical wiring as a giant antenna to receive wireless signals at a set frequency. A low-power sensor placed within 10 to 15 feet of electrical wiring can use the antenna to send data to a single base station plugged in anywhere in the home.

The device is called Sensor Nodes Utilizing Powerline Infrastructure, or SNUPI. It originated when Patel and co-author Erich Stuntebeck were doctoral students at Georgia Tech and worked with thesis adviser Gregory Abowd to develop a method using electrical wiring to receive wireless signals in a home.

They discovered that home wiring is a remarkably efficient antenna at 27 megahertz. Since then, Patel's team at the UW has built the actual sensors and refined this method. Other co-authors are UW's Gabe Cohn, Jagdish Pandey and Brian Otis.

Cohn, a UW doctoral student in electrical engineering, was lead student researcher and tested the system. In a 3,000-square-foot house he tried five locations in each room and found that only 5 percent of the house was out of the system's range, compared to 23 percent when using over-the-air communication at the same power level.

Cohn also discovered some surprising twists - that the sensors can transmit near bathtubs because the electrical grounding wire is typically tied to the copper plumbing pipes, that a lamp cord plugged into an outlet acts as part of the antenna, and that outdoor wiring can extend the sensors' range outside the home.

While traditional wireless systems have trouble sending signals through walls, this system actually does better around walls that contain electrical wiring.

Most significantly, SNUPI uses less than 1 percent of the power for data transmission compared to the next most efficient model.

"Existing nodes consumed the vast majority of their power, more than 90 percent, in wireless communication," Cohn said. "We've flipped that. Most of our power is consumed in the computation, because we made the power for wireless communication almost negligible."

The existing prototype uses UW-built custom electronics and consumes less than 1 milliwatt of power when transmitting, with less than 10 percent of that devoted to communication. Depending on the attached sensor, the device could run continuously for 50 years, much longer than the decade-long shelf life of its battery.

"Basically, the battery will start to decompose before it runs out of power," Patel said.

Longer-term applications might consider using more costly medical-grade batteries, which have a longer shelf life. The team is also looking to reduce the power consumption even further so no battery would be needed.

They say they're already near the point where solar energy or body motion could provide enough energy. The researchers are commercializing the base technology, which they believe could be used as a platform for a variety of sensing systems.

Another potential application is in health care. Medical monitoring needs a compact device that can sense pulse, blood pressure or other properties and beam the information back to a central database, without requiring patients to replace the batteries.

The technology does not interfere with electricity flow or with other emerging systems that use electrical wiring to transmit Ethernet signals between devices plugged into two outlets.

.


Related Links
The SNUPI project
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Researchers 'read' words in brain signals
Salt Lake City (UPI) Sep 7, 2010
U.S. researchers say they've translated brain signals into words, a step toward allowing severely paralyzed people to use their thoughts to "talk." University of Utah scientists translated signals generated by the brain into words using grids of micro-electrodes implanted beneath the skull but atop the brain, a university release said Monday. "We have been able to decode spoken w ... read more


TECH SPACE
NASA's Lunar Spacecraft Completes Exploration Mission Phase

Russia To Test Unmanned Lander For Mars Moon Mission

China preps next lunar space mission

Chandrayaan-2 Will Try Out New Ideas And Technologies

TECH SPACE
105 Days In Isolation - And Counting - For 400 More

NASA's Next Mars Rover Rolls Over Ramps

Don't Forget Deimos

Russia to test Mars lander for 2011 flight

TECH SPACE
Boeing inks deal to put tourists in space by 2015

Boeing And Space Adventures To Offer Commercial Spaceflight Opportunities

OS/COMET To Be Used On Orion CEV Project

NSS Calls For House To Adopt Senate Version of NASA Authorization Act Of 2010

TECH SPACE
China's Second Lunar Probe Chang'e-2 To Reach Lunar Orbit Faster Than Chang'e-1

China Finishes Construction Of First Unmanned Space Module

China Contributes To Space-Based Information Access A Lot

China Sends Research Satellite Into Space

TECH SPACE
Russian Mission Control Set To Readjust ISS Orbit

Boeing wins billion dollar NASA extension

NASA Opens Space Station For Biological Research From NIH Grants

Russian cargo vessel docks at International Space Station

TECH SPACE
Sirius XM-5 Satellite Delivered To Baikonur For October Launch

Emerging Technologies May Fuel Revolutionary Launcher

EUMETSAT Chooses Arianespace To Launch Metop-C

Falcon 1e Launch Capabilities Brought To The European Institutional Market

TECH SPACE
This Planet Smells Funny

Scientists looking to spot alien oceans

Deadly Tides Mean Early Exit For Hot Jupiters

Can We Spot Volcanoes On Alien Worlds

TECH SPACE
ARTEMIS - The First Earth-Moon Libration Orbiter

Asia defies global newspaper meltdown

E-readers yet to win mass market in China

Indian handset makers emerge as hyper-competitive force




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement