. 24/7 Space News .
CARBON WORLDS
Highly nitrogen and sulfur dual-doped carbon microspheres for supercapacitors
by Staff Writers
Beijing, China (SPX) Jul 10, 2017


This figure shows the morphology, molecular model and cycling performance of the N/S co-doped carbon microsphere. Credit Science China Press

Among various kinds of electrode materials for supercapacitors, carbon-based materials are most commonly used because of their commercially available and cheap, and they can be produced with large specific surface area.

Heteroatom doping, especially dual-doped carbon materials have attracted much attention for the past few years, and have been regarded as one of the most efficient strategies to enhance the capacitance behavior of porous carbon materials.

However, most of the preparations of co-doped carbon materials involve high temperature treatment and post-processing of doping procedures. Therefore, it is necessary to develop a concise route for large-scale production of dual-doped carbon with desirable morphology and structure, and meanwhile, to achieve high content of doping.

In an article published in Science Bulletin, Prof. Deli Wang's research group describe a facile two-step synthetic route was developed to fabricate N/S co-doped carbon microsphere (NSCM) by merely using thiourea as dopant.

The N/S doping content is controlled via varying the carbonization temperature. It has been proved that a suitable quantity of N and S groups can not only provide pseudo-capacitance but also promote the electron transfer for carbon materials, which ensures the further utilization of the exposed surfaces for charge storage.

The optimized NSCM prepared at a carbonization temperature of 800 oC (NSCM-800) achieves a high capacitance of 277.1 F g-1 at a current density of 0.3 A g-1, and a high capacitance retention of 98.2% after 5000 cycles.

Since the precursors used in this strategy are glucose and thiourea, which are both inexpensive and widely used, the production of high doping content of co-doped carbon materials can be easily scaled-up for practical applications of supercapacitors in light of the very simple reaction processes involved.

Research paper

CARBON WORLDS
A room temperature field-effect transistor using graphene's electron spin
Gothenburg, Sweden (SPX) Jul 10, 2017
Graphene Flagship researchers based at Chalmers University of Technology in Gothenburg, Sweden have published in Nature Communications a research paper showing a graphene-based spin field-effect transistor operating at room temperature. Using the spin of the electrons in graphene and other layered material heterostructures the researchers have produced working devices as a step towards int ... read more

Related Links
Science China Press
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Creating Trends in Space: An Interview with NanoRacks CEO Jeffrey Manber

Counting calories in space

Trump offers bold space goals but fills in few details

Liftoff for Trump's bold space plans may have to wait

CARBON WORLDS
Hypersonic Travel Possibility Heats Up Massively After New Material Discovery

Aerojet Rocketdyne tests Advanced Electric Propulsion System

Russia to Carry Out Five Launches From Vostochny Space Center in 2018

Spiky ferrofluid thrusters can move satellites

CARBON WORLDS
Curiosity Mars Rover Begins Study of Ridge Destination

Tributes to wetter times on Mars

Opportunity will spend three weeks at current location due to Solar Conjunction

Mars surface 'more uninhabitable' than thought: study

CARBON WORLDS
China develops sea launches to boost space commerce

Chinese Rocket Fizzles Out, Puts Other Launches on Hold

Chinese satellite Zhongxing-9A enters preset orbit

Chinese Space Program: From Setback, to Manned Flights, to the Moon

CARBON WORLDS
LISA Pathfinder: bake, rattle and roll

100M Pound boost for UK space sector

Iridium Poised to Make Global Maritime Distress and Safety System History

HTS Capacity Lease Revenues to Reach More Than $6 Billion by 2025

CARBON WORLDS
Spacepath Communications Announces Innovative Frequency Converter Systems

WVU to develop software for future NASA Mars rovers, test 3-D printed foams on ISS

Giant enhancement of electromagnetic waves revealed within small dielectric particles

ANU invention may help to protect astronauts from radiation in space

CARBON WORLDS
Evidence discovered for two distinct giant planet populations

Molecular Outflow Launched Beyond Disk Around Young Star

Hidden Stars May Make Planets Appear Smaller

More to Life Than the Habitable Zone

CARBON WORLDS
NASA spacecraft to fly over Jupiter's Great Red Spot

Juno Completes Flyby over Jupiter's Great Red Spot

Juno spots Jupiter's Great Red Spot

New evidence in support of the Planet Nine hypothesis









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.