. 24/7 Space News .
EARLY EARTH
Analysis of proto-mammal fossil clarifies the mammalian family tree
by Staff Writers
Chicago IL (SPX) Nov 23, 2015


This video shows the original fossil and subsequent 3-D reconstruction of the haramiyavia jaw. An animation of how its teeth occluded, based on wear patterns revealed by scanning electron microscopy, is included. Image courtesy April Neander. Watch a video on the research here.

A new analysis of the jaw of Haramiyavia clemmenseni, one of the earliest known proto-mammals, clarifies the timeline of early mammalian evolution. Through high-resolution computer tomography, scientists from the University of Chicago, Harvard University and Brown University were able to examine the Haramiyavia type specimen in unprecedented detail.

The analysis revealed complex teeth and chewing motions adapted for an herbivorous diet - indicating diverse feeding adaptations evolved early among proto-mammal lineages. But the primitive structures of its jaw, related to a primitive middle ear, suggest that Haramiyavia and its relatives were not mammals, and instead occupied a more ancestral position on the mammalian evolutionary tree.

The findings, published in the Proceedings of the National Academy of Sciences on Nov. 16, 2015, shed light on efforts to accurately date the period when major mammalian groups first evolved. The study confirms previous suggestions that mammal diversification occurred in the Jurassic around 175 million years ago - more than 30 million years after Haramiyavia and other forerunners to mammals diversified in the Triassic.

"This fossil is a unique representative from an incredibly important era in the evolution of mammals; the ecosystem of the whole world changed as the Triassic transitioned into the Jurassic," said study senior author Neil Shubin, PhD, Robert R. Bensley Distinguished Service Professor of Organismal Biology and Anatomy at the University of Chicago.

"When you look at the entirety of the Haramiyavia jaw and its primitive features, it's clear that this group sat at the very base of the mammalian family tree, much in the same way that Tiktaalik rosea sat at the base of the tetrapod tree."

Haramiyids are one of the earliest proto-mammal lineages, arising in the Triassic period around 210 million years ago. Known only through isolated teeth, haramiyids were largely mysterious until the discovery of the remarkably well-preserved jaw of Haramiyavia - with intact molars, nearly complete mandibles and postcranial skeletal bones--in Greenland in 1995 by a team including Shubin, Stephen Gatesy, professor of biology at Brown University, and the late Farish Jenkins, former professor of zoology at Harvard University.

"As the earliest known haramiyid, Haramiyavia is the key piece of evidence for inferences about the timeline of early mammalian evolution," said study co-author Zhe-Xi Luo, PhD, professor of organismal biology and anatomy at the University of Chicago.

A 30-million-year question
The initial analysis of Haramiyavia relied on painstaking manual preparation by the late William Amaral, former fossil preparator at Harvard University, and significant portions of the fossil were not fully described.

This gap in knowledge led to a debate over the shape of the mammalian evolutionary tree: Did haramiyids belong on the crown mammal branch, from which all modern mammals descend, suggesting that mammals began to diversify more than 210 million years ago in the Triassic? Or did haramiyids occupy a separate, more ancestral branch at the base of the family tree, suggesting mammal diversification occurred much later?

To resolve this question, Shubin, Gatesy, and Luo, reexamined the entirety of the Haramiyavia specimen using a suite of modern technological tools, including high-resolution computed tomography (CT) scans and 3D reconstruction. Coupled with exhaustive documentation from the initial fossil preparation, the team was able to describe Haramiyavia in unprecedented detail.

The team found many primitive structures in the jaw, including a postdentary trough that is connected to a primitive middle ear. This was strong evidence that Haramiyavia was unrelated to other crown mammals - in particular, the multituberculates, a group of early mammal that has previously been thought to be closely related to the haramiyids.

This finding places Haramiyavia and all other members of the haramiyid lineage on a more ancestral position in the mammalian evolutionary tree, on a separate branch from mammals. This reaffirms previous arguments that the explosion of modern mammal diversification did not occur in the Triassic period, but many millions of years later in the Jurassic.

"With CT and other new technologies, we can extract anatomical insights that were not possible to obtain in the past, allowing us to more accurately interpret mammalian evolution," Luo said. "Haramiyavia establishes the ancestral morphology for the haramiyid group, which can now be clearly placed at the base of the mammalian family tree."

The team also created virtual animations that showed how the teeth of Haramiyavia actually functioned 210 million years ago. Analyses with scanning electron microscopy revealed Haramiyavia possessed complex teeth that indicated an herbivorous diet, including incisors for cutting and complex cheek teeth for grinding plant food. Later herbivorous mammals evolved similar complex teeth, despite not being directly descended from the haramiyids - a striking example of convergent evolution.

The feeding habits made Haramiyavia the earliest known herbivore among mammalian ancestors and placed them apart from other early proto-mammal groups, which had teeth adapted to insect or worm-based diets. This suggests that the early forerunners to mammals diversified in the Triassic, branching out into multiple ecological niches that likely shaped later mammalian evolution.

"When we worked on the Haramiyavia fossil in the 90s, we had to literally scrape at it with a needle under a microscope. It took months to years to come up with sketches and clay models," Shubin said. "It's really fun for me to see how it worked back then, and today study the fossil with computer reconstructions and 3D printed models. It's an amazing demonstration of how new technology can transform an old discovery."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Chicago Medical Center
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARLY EARTH
Ancient mass extinction led to dominance of tiny fish
Philadelphia PA (SPX) Nov 20, 2015
When times are good, it pays to be the big fish in the sea; in the aftermath of disaster, however, smaller is better. According to new research led by the University of Pennsylvania's Lauren Sallan, a mass extinction 359 million years ago known as the Hangenberg event triggered a drastic and lasting transformation of Earth's vertebrate community. Beforehand, large creatures were the norm, ... read more


EARLY EARTH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

EARLY EARTH
A witness to a wet early Mars

NASA completes heat shield testing for future Mars exploration vehicles

Curiosity Mars Rover Heads Toward Active Dunes

Upgrade Helps NASA Study Mineral Veins on Mars

EARLY EARTH
XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

Orion's European module ready for testing

General Dynamics demos SGSS Command and Control Infrastructure for NASA

EARLY EARTH
China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

New rocket readies for liftoff in 2016

EARLY EARTH
Space-grown flowers will be new year blooms on International Space Station

Cygnus Launch Poised to Bolster Station Science, Supplies

Progress cargo spacecraft to be launched Dec 21

Space station power short circuits, system repairs needed

EARLY EARTH
NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

United Launch Alliance exits launch competition, leaving SpaceX

Spaceport America opens up two new campuses

Recycled power plant equipment bolsters ULA in its energy efficiency

EARLY EARTH
Forming planet observed for first time

UA researchers capture first photo of planet in making

Rocket Scientists to Launch Planet-Finding Telescope

5400mph winds discovered hurtling around planet outside solar system

EARLY EARTH
Primordial goo used to improve implants

From nanocrystals to earthquakes, solid materials share similar failure characteristics

UW team refrigerates liquids with a laser for the first time

Network analysis shows systemic risk in mineral markets









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.