Subscribe free to our newsletters via your
. 24/7 Space News .




CLIMATE SCIENCE
Greenland Ice Sheet more vulnerable than previously thought
by Staff Writers
Cambridge, UK (SPX) Sep 30, 2014


A scientist explores the remains of a supraglacial lake after it has drained. Image courtesy Sam Doyle.

A new model developed by researchers at the University of Cambridge has shown that despite its apparent stability, the massive ice sheet covering most of Greenland is more sensitive to climate change than earlier estimates have suggested, which would accelerate the rising sea levels that threaten coastal communities worldwide.

In addition to assessing the impact of the increasing levels of meltwater created and spilled into the ocean each year as the climate continues to warm, the new model also takes into account the role that the soft, spongy ground beneath the ice sheet plays in its changing dynamics. Details are published in the journal Nature Communications.

The Greenland Ice Sheet, which is the second-largest ice sheet in the world, covers 1.7 million square kilometres - an area roughly eight times the size of the United Kingdom - and contains enough ice to raise sea levels by more than seven metres if it were to be lost altogether.

Currently, due to surface melting alone, it is losing ice at a net annual rate of 200 gigatonnes, equating to 0.6 millimetres of sea level rise. A similarly large, but ultimately more uncertain source of sea level rise is tied to a net annual ice loss caused by increased movement of the ice sheet, which results in more ice being discharged into the ocean. Globally, sea levels are rising at three millimetres annually.

Large ice sheets such as in Greenland are far from stationary. Different parts of the ice often move at different speeds, causing ice to shear, a phenomenon known as ice flow.

"When these large ice sheets melt, whether that's due to seasonal change or a warming climate, they don't melt like an ice cube," said Dr Marion Bougamont of Cambridge's Scott Polar Research Institute, who led the research.

"Instead, there are two sources of net ice loss: melting on the surface and increased flow of the ice itself, and there is a connection between these two mechanisms which we don't fully understand and isn't taken into account by standard ice sheet models."

Whereas other models of the Greenland Ice Sheet typically assume the ice slides over hard and impermeable bedrock - an assumption which is largely practical and based on lack of constraints - this study incorporates new evidence from ground-based surveys, which show soft and porous sediments at the bed of the ice sheet, more like the soft and muddy bottom of a lake than a sheet of solid rock.

The new study specifically identifies the intake and temporal storage of water by weak sediment beneath the ice sheet as a crucial process in governing the ice flow.

Using a three-dimensional ice sheet model, together with an observational record of surface melting produced by collaborators at Aberystwyth University, Dr Bougamont and Dr Poul Christoffersen were able to accurately reproduce how the ice sheet's seasonal movement changes in response to the amount of surface meltwater being delivered to the ground below.

Lakes which form on the surfaces of glaciers, known as supraglacial lakes, are often created during the melt season, and typically last from early June to late August.

Co-author Professor Alun Hubbard of Aberystwyth University studied these lakes and found that many empty in just a matter of hours, when hydrofracturing opens up water-filled crevasses, resulting in huge amounts of water entering and flooding the subglacial environment. In warmer years, these high-discharge drainage events are expected to become even more frequent.

"Not only is the ice sheet sensitive to a changing climate, but extreme meteorological events, such as heavy rainfall and heat waves, can also have a large effect on the rate of ice loss," said Dr Christoffersen.

"The soft sediment gets weaker as it tries to soak up more water, making it less resistant, so that the ice above moves faster. The Greenland Ice Sheet is not nearly as stable as we think."

While complete loss of all ice in Greenland is judged to be extremely unlikely during this century, the record extent of surface melting in the past decade clearly shows that the ice sheet is responding to Earth's changing climate.

In this study, the researchers used two different approaches. First, they used the total amount of surface runoff as a means to drive their model, but the outcome from this experiment was inconsistent with observations. They then used only water stored temporarily in supraglacial lakes on the ice sheet's surface.

They found that although only a small fraction of the total amount of meltwater produced on the surface is stored in supraglacial lakes, the high magnitude and frequency of lake drainage events causes the ice sheet to immediately accelerate as observed.

Having accurately reproduced the hydrological response of ice flow along the western margin of the ice sheet, the authors were able to subsequently evaluate the sensitivity of flow to warmer climatic conditions, resulting in more meltwater on the surface.

This showed stable annual flow under present-day conditions, but a more vulnerable ice sheet in warmer years when more meltwater reaches the bed via frequent high-discharge drainage events, not only because of the emptying of supraglacial lakes such as the ones currently observed, but also because daily variations in melt volume will become equally large.

The study concludes that there is a limit on how much water can be stored in the soft ground beneath the Greenland Ice Sheet. This makes it sensitive to climate change as well as to increased frequency of short-lived, but extreme, meteorological events including rainfall and heat waves.

.


Related Links
University of Cambridge
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CLIMATE SCIENCE
Climate: Now to turn summit prose into action
Paris (AFP) Sept 24, 2014
Having renewed their commitment to saving Earth's climate, governments face daunting challenges in the coming months to draft a global pact and set targets for slashing carbon emissions, analysts said Wednesday. Important signals went out Tuesday from a special summit of political leaders and corporate bosses hosted by UN chief Ban Ki-moon in New York. But action is still falling short o ... read more


CLIMATE SCIENCE
Russia to Launch Full-Scale Moon Exploration Next Decade

Lunar explorers will walk at higher speeds than thought

Year's final supermoon is a Harvest Moon

China Aims for the Moon, Plans to Bring Back Lunar Soil

CLIMATE SCIENCE
India's Mars Orbiter Cost Only 11 Percent of NASA's Maven Probe: Reports

India's spacecraft beams back first Mars photos

NASA Rover Drill Pulls First Taste From Mars Mountain

Back to Driving

CLIMATE SCIENCE
NASA technologies to be studied for commercialization

NASA Seeks Best and Brightest for Space Technology Fellowships

Midland International Receives FAA Spaceport License Approval

Japanese Firm Plans Space Elevator to Run by 2050

CLIMATE SCIENCE
China Exclusive: Mars: China's next goal?

Astronauts eye China's future space station

China eyes working with other nations as station plans develop

China completes construction of advanced space launch facility

CLIMATE SCIENCE
A Giant Among Earth Satellites

New ISS Trio Launches to Expand Expedition 41 to Six

SpaceX cargo ship arrives at International Space Station

Halfway through Blue Dot mission

CLIMATE SCIENCE
Arianespace's lightweight Vega launcher is readied for its mission with the European IXV spaceplane

Soyuz Rocket Awaiting Launch at Baikonur Cosmodrome

Elon Musk, Rick Perry attend groundbreaking for Texas spaceport

France raises heat on decision for next Ariane rocket

CLIMATE SCIENCE
New milestone in the search for water on distant planets

Clear skies on exo-Neptune

Distant planet's atmosphere shows evidence of water vapor

Chandra Finds Planet That Makes Star Act Deceptively Old

CLIMATE SCIENCE
Fed Up With Federal Inaction, States Act Alone on Cap-and-Trade

Microsoft to tap $2-trillion Indian cloud market

How to make stronger, 'greener' cement

Putting the squeeze on quantum information




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.