Subscribe free to our newsletters via your
. 24/7 Space News .




ROBO SPACE
Graphene-control cutting using an atomic force microscope-based nanorobot
by Staff Writers
Beijing, Australia (SPX) May 29, 2012


This shows graphene cutting results based on a nanorobot. Credit: Science China Press.

Graphene, a stable two-dimensional structure, has attracted tremendous worldwide attention in recent years because of its unique electronic, physical and mechanical properties as well as its wide range of applications.

It has been proven experimentally that the electrical properties of graphene are strongly related to its size, geometry, and edge structure. Therefore, controlling graphene to desired edge structures and shapes is required for its practical application.

To date, researchers have explored many graphene patterning methods, such as a catalytic cutting [1-4], SPM(Scanning Probe Microscopy)-based electric field tailoring [5-7], energy beam cutting [8-10] and photocatalytic patterning techniques [11]. The current methods can tailor graphene, however, lack of real-time sensor feedback during patterning and cutting results in an open-loop manufacturing process.

This greatly limits the cutting precision of graphene and reduces the efficiency of device manufacture. Therefore, a closed-loop fabrication method using interaction forces as real-time feedback is needed to tailor graphene into desired edge structures and shapes in a controllable manner.

Professor LIU Lianqing from the State Key Laboratory of Robotics, Shenyang Institute of Automation Chinese Academy of Sciences and Professor XI Ning from the Department of Electrical and Computer Engineering, Michigan State University undertook the background research to overcome this challenge. Their work, entitled "Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot", was published in SCIENTIA SINICA Physica, Mechanica and Astronomica. 2012, Vol 42(4).

They investigated controlled cutting methods of graphene based on nanoscale force feedback by the introduction of robot perception, drivers and behavior coupled with an atomic force microscope. They found that the cutting forces were related to the cutting direction of the graphene lattice because of the asymmetry of the crystal structure of graphene.

This discovery is expected to allow nanoscale forces to be used as real-time feedback to establish a closed-loop mechanism to cut graphene with precise control.

Atomic force microscopy is only a nanoscale observation tool, and its main shortcomings are poor location ability, lack of real-time feedback, and low efficiency. These challenges are solved by the introduction of robotics that is efficient at nanomanipulation.

In this article, the relationship between lattice cutting directions and nanocutting forces were studied systematically by rotating the sample under the same cutting conditions (load, cutting velocity, tip, and effective cutting surface of the tip).

The experimental results show that the cutting force is related to the lattice cutting direction: the cutting forces vary with cutting direction in the same period with a difference of up to around 209.36 nN.

This article is the first to show that cutting forces vary with lattice cutting directions, which lays an experimental foundation to build a closed-loop fabrication strategy using real-time force as a sensor feedback to control the cutting direction with lattice precision.

Combined with existing parallel multi-tip technology, the technique developed in this work will make it possible to fabricate large-scale graphene-based nanodevices at low cost with high efficiency.

This research was supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z316), the National Natural Science Foundation of China (Project Nos. 60904095, 51050110445, and 61175103), and the CAS/SAFEA (Chinese Academy of Sciences/State Administration of Foreign Experts Affairs) International Partnership Program for Creative Research Teams.

See the article: Zhang Y, Liu L Q, Xi N, et al. Graphene Control Cutting Using an Atomic Force Microscope Based NanoRobot (In Chinese). SCIENTIA SINICA Physica, Mechanica and Astronomica, 2012, 42(4):358

.


Related Links
Science in China Press
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ROBO SPACE
Rescue robot tested at So. Calif. beach
Malibu, Calif. (UPI) May 25, 2012
Lifeguards in Los Angeles County say they've tested a robot rescue craft that could save struggling swimmers. Officials of the Los Angeles County Fire Department said the remote-controlled rescue robot can be guided through the surf to reach stranded swimmers who can then hold on to the machine until lifeguards arrive. Mock rescue tests have been conducted in the surf at Zuma Bea ... read more


ROBO SPACE
NASA Offers Guidelines To Protect Historic Sites On The Moon

Neil Armstrong gives rare interview - to accountant

Perigee "Super Moon" On May 5-6

India's second moon mission Chandrayaan-2 to wait

ROBO SPACE
Waking Up with the Sun's Rays

NASA Funded Research Shows Existence of Reduced Carbon on Mars

Did Ancient Mars Have a Runaway Greenhouse?

Opportunity Drives to Dusty Patch of Soil

ROBO SPACE
New Moon for India

Boeing Completes Software PDR Of New Crew Ship

NASA hails 'new era' in exploration

CU astronaut-alumnus Scott Carpenter looks back at 50th anniversary of Aurora 7 mission

ROBO SPACE
Tiangong 1 Ready To Meet Shenzhou 9

Sri Lanka plans to launch its first satellite in 2015

When Will Shenzhou 9 Be Launched

China's space women wait for blast-off

ROBO SPACE
SpaceX Launches Falcon 9 Dragon on Historic Mission

SpaceX Dragon Transports Student Experiments to Space Station

Space Station - Here We Come!

ISS Research and Development Conference June 26-28 Denver

ROBO SPACE
SpaceX capsule has 'new car' smell, astronauts say

SpaceX makes final approach to space station

SpaceX's Dragon makes historic space station dock

SpaceX Launches NASA Demonstration Mission to ISS

ROBO SPACE
Newfound exoplanet may turn to dust

Cosmic dust rings no guarantee of planets

In search of new 'Earths' beyond our Solar System

Free-floating planets in the Milky Way outnumber stars by factors of thousands

ROBO SPACE
Mystifying materials

Just How Green is Google

'Metamaterials,' quantum dots show promise for new technologies

Thousands of invisibility cloaks trap a rainbow




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement