Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
'Fossils' of galaxies reveal the formation and evolution of massive galaxies
by Staff Writers
Tokyo, Japan (SPX) Sep 28, 2015


The spectra is equivalent to 200 hours of Subaru Telescope's observing time. Rectangles on the spectrum indicate spectral features, which are used to calculate the ages, the amount of heavy elements and the alpha-element abundance in the stellar populations of these galaxies. Image courtesy ETH Zurich/NAOJ. For a larger version of this image please go here.

An international team led by researchers at Swiss Federal Institute of Technology in Zurich observed massive dead galaxies in the universe 4 billion years after the Big Bang with the Subaru Telescope's Multi-Object InfraRed Camera and Spectrograph (MOIRCS). They discovered that the stellar content of these galaxies is strikingly similar to that of massive elliptical galaxies seen locally. Furthermore, they identified progenitors of these dead galaxies when they were forming stars at an earlier cosmic epoch, unveiling the formation and evolution of massive galaxies across 11 billion years of cosmic time.

In the local universe, massive galaxies hosting more than about 100 billion stars are predominantly dead elliptical galaxies, that is, without any signs of star-formation activity. Many questions remain on when, how and for how long star formation occurred in such galaxies before the cessation of star formation, as well as what happened since to form the dead elliptical galaxies seen today.

In order to address these issues, the research team made use of fossil records imprinted by stars in the spectra of distant dead galaxies which give important clues to their age, metal content, and element abundances. Local massive dead galaxies are about 10 billion years old and rich in heavy elements.

Also, alpha-elements (Note), which measure the duration of star formation, are more abundant than iron, indicating that these galaxies formed a large amount of stars in a very short period. The team investigated the stellar content of galaxies in the distant universe 4 billion years after the Big Bang, in order to study galaxy evolution much closer to their formation epoch.

The team took the advantage of the MOIRCS's capability to observe multiple objects simultaneously, efficiently observing a sample of 24 faint galaxies. They created a composite spectrum that would have taken 200 hours of Subaru Telescope's time for a single spectrum of comparable quality.

Analysis of the composite spectrum shows that the age of the galaxies is already 1 billion years old when observed 4 billion years after the Big Bang. They host 1.7 times more heavy elements relative to the amount of hydrogen and their alpha-elements are twice enhanced relative to iron than the solar values.

It is the first time that the alpha-element abundance in stars is measured in such distant dead galaxies, and it tells us that the duration of star formation in these galaxies was shorter than 1 billion years. These results reveal that these massive dead galaxies have evolved to today without further star formation.

What do massive dead galaxies look like when they are forming stars? To answer this, the team investigated the progenitors of their sample based on their spectral analysis. The progenitors must be star-forming galaxies in the universe 1 billion years before the observed epoch for the dead galaxies.

Indeed, they do find similarly massive star-forming galaxies at the right epoch and with the right star formation rate expected from the spectra. If these active galaxies continue to create stars at the same rate, they will immediately become more massive than seen in the present universe. Therefore, these galaxies will cease star formation soon and simply age.

This study establishes a consistent picture of the history of massive galaxies over 11 billion years of cosmic time. Dr. Masato Onodera who leads the team says, "We would like to explore galaxy evolution in more detail by carrying out an object-by-object study and by extending the method to an even earlier epoch."

This research was published on 1st August 2015 in The Astrophysical Journal (Onodera et al. 2015 "The Ages, Metallicities, and Element Abundance Ratios of Massive Quenched Galaxies at z~1.6").


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
National Institutes of Natural Sciences
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Hot, dense material surrounds O-type star with largest magnetic field known
Melbourne FL (SPX) Sep 25, 2015
Observations using NASA's Chandra X-ray Observatory revealed that the unusually large magnetosphere around an O-type star called NGC 1624-2 contains a raging storm of extreme stellar winds and dense plasma that gobbles up X-rays before they can escape into space. Findings from a team of researchers led by Florida Institute of Technology Assistant Professor Veronique Petit may help scientis ... read more


STELLAR CHEMISTRY
NASA's Lunar Reconnaissance Orbiter's Dance with Eclipses

China to rehearse new carrier rocket for lunar mission

NASA's LRO discovers Earth's pull is 'massaging' our moon

Moon's crust as fractured as can be

STELLAR CHEMISTRY
Evidence of brine 'flows' on Mars: water study

Celebrating one year of Mars Orbiter Mission in Orbit; Release of Mars Atlas

NASA Confirms Evidence That Liquid Water Flows on Today's Mars

Space experts swoon for 'The Martian' despite inaccuracies

STELLAR CHEMISTRY
Airbus Defence and Space builds first hardware for Orion space vehicle's service module

India PM heads to Silicon Valley chasing a digital dream

Next stop for the Perlan 2 Glider: The edge of space

Space Architecture: From Outer Space to the Ocean Floor

STELLAR CHEMISTRY
China's new carrier rocket succeeds in 1st trip

China launches new type of carrier rocket: state media

Long March-2D carrier rocket blasts off in NW China

Progress for Tiangong 2

STELLAR CHEMISTRY
Fire in the Hole: Studying How Flames Grow in Space

NASA Selects Five New Flight Directors to Lead Mission Control

Space fish detail effects of microgravity on bones

US astronaut misses fresh air halfway through year-long mission

STELLAR CHEMISTRY
Ariane 5 ready to orbit Sky Muster and ARSAT-2 on September 30

Air Force welcomes Blue Origin to Launch Complex 36

Arianespace targets record year of new business and launch operations in 2015

Moscow to Launch Telecom Satellites on Rokot Carrier Rocket

STELLAR CHEMISTRY
Stellar atmosphere can be used to predict the composition of rocky exoplanets

Watching an exoplanet in motion around a distant star

Study: 'Hot Jupiter' exoplanets formed extremely rapidly

Europlanet 2020 launches new era of planetary collaboration in Europe

STELLAR CHEMISTRY
Lockheed Martin moves forward with Space Fence program

Virtual reality stretching beyond video games

Physicists defy conventional wisdom to identify ferroelectric material

A thermal invisibility cloak actively redirects heat




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.