. 24/7 Space News .
ICE WORLD
Formation of coastal sea ice in North Pacific drives ocean circulation
by Staff Writers
Santa Cruz CA (SPX) Oct 21, 2015


The formation of coastal sea ice, seen here in the Arctic Ocean, plays an important role in driving "overturning circulation" in the North Pacific Ocean. Image courtesy Karla Knudson. For a larger version of this image please go here.

An unprecedented analysis of North Pacific ocean circulation over the past 1.2 million years has found that sea ice formation in coastal regions is a key driver of deep ocean circulation, influencing climate on regional and global scales. Coastal sea ice formation takes place on relatively small scales, however, and is not captured well in global climate models, according to scientists at the University of California, Santa Cruz, who conducted the study.

A paper on the new findings will be published in a future issue of the journal Paleoceanography and is currently available online.

"We have identified an important process that current global climate models don't adequately capture. Coastal sea ice formation may be important to future climate change because the arctic and subarctic regions are warming at twice the rate of other parts of the world," said first author Karla Knudson, a graduate student in Earth and planetary sciences at UC Santa Cruz.

When sea ice forms, it expels salt into the surrounding water, increasing the density of the water and causing it to sink, carrying oxygenated surface water into the depths. One result is a flow of cold deep water toward the equator and warm surface water toward the poles, and this "overturning circulation" plays a crucial role in moving heat around the globe.

"It helps to modulate the climate by transferring heat from the equator to the poles," said coauthor Christina Ravelo, professor of ocean sciences at UC Santa Cruz.

This process (also called "thermohaline circulation") has received less attention in the North Pacific than in the North Atlantic, where the formation of North Atlantic Deep Water is a powerful driver of global ocean circulation and climate. In the North Pacific, overturning circulation driven by formation of the North Pacific Intermediate Water is not as strong as in the North Atlantic, but it plays a major role in the region's climate.

In 2009, when Ravelo led an expedition of the Integrated Ocean Drilling Program (IODP) to the Bering Sea (with co-chief scientist Kozo Takahashi of Kyushu University, Japan), one of her main goals was to investigate the role of the North Pacific Intermediate Water in climate change.

The expedition drilled sediment cores from the floor of the Bering Sea that preserve records of the regional climate and ocean circulation covering the past 1.2 million years, much longer than any other oceanographic records from that region. By analyzing these records, Knudson and Ravelo found that the strength of the overturning circulation in the North Pacific is inherently linked to global climate changes, but not in the way scientists had previously thought.

The sediment cores used in this study cover a period when the planet went through many climate cycles driven by variations in Earth's orbit, from extreme glacial periods such as the Last Glacial Maximum about 20,000 years ago, when massive ice sheets covered the northern parts of Europe and North America, to relatively warm interglacial periods with climates more like today's.

Previous studies based on global climate models indicated that the overturning circulation in the North Pacific and North Atlantic responded in opposite ways to major shifts in global climate. During glacial periods, sea level falls as water gets locked up in the ice sheets, and in extreme cases the Bering Strait connecting the Bering Sea to the Arctic Ocean closes and becomes a land bridge. This shuts off the flow of relatively fresh North Pacific water into the saltier North Atlantic, leading to increased salinity in the North Atlantic and stronger overturning circulation there.

At the same time, the thinking went, a fresher North Pacific would have weaker circulation. This oceanic "seesaw" would result in a cooling effect in one ocean and a warming effect in the other. But that's not what the sediment cores revealed. "We found that the overturning circulation actually strengthens in both oceans when the Bering Strait is closed," Knudson said.

What the climate models were missing, she said, was the strong brine production from sea ice formation in the Bering Sea. The global climate models do a good job of simulating the process of sea ice formation over large areas in the open ocean. But the critical coastal process, which actually generates more of the deep water, occurs on smaller scales and is only captured in high-resolution regional climate models, Knudson said.

The Bering Sea is less important during warm periods like today, when wintertime sea ice formation in the Sea of Okhotsk generates most of the North Pacific Intermediate Water. But the same process of sea ice formation and brine production along coastal shelves plays a critical role wherever it occurs.

"These small-scale processes might be important to understanding the full impact of climate change," Ravelo said. "As the climate gets warmer, we could see reduced sea ice formation in the Sea of Okhotsk and the Arctic. So it would be nice for the climate models to have sufficient resolution to be able to predict the impact of changes in coastal sea ice."

Knudson and Ravelo based their findings on an analysis of carbon and oxygen isotopes in the calcium carbonate shells of tiny marine organisms called foraminifera, which are preserved in seafloor sediments. Chemical signatures of the ocean water the organisms lived in are locked into the composition of their shells, and researchers can analyze them for evidence of past water temperatures and other oceanographic conditions.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of California - Santa Cruz
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
Pakistan facing climate 'calamity' if warnings go unheeded
Karachi (AFP) Oct 20, 2015
Karachi, 2050: The sprawling megacity lies crumbling, desiccated by another deadly heatwave, its millions of inhabitants suffering life-threatening water shortages and unable to buy bread that has become too expensive to eat. It sounds like the stuff of dystopian fiction but it could be the reality Pakistan is facing. With its northern glaciers melting and its population surging - the coun ... read more


ICE WORLD
Mound near lunar south pole formed by unique volcanic process

Lunar Pox

Space startup confirms plans for robotic moon landings

Asteroids found to be the moon's main 'water supply'

ICE WORLD
Opportunity parked for solar panels to charge up for winter

Pebbles on Mars likely traveled tens of miles down a riverbed

To save on weight, a detour to the moon is the best route to Mars

Opportunity working at 'Marathon Valley' before winter relocation

ICE WORLD
Brands eye big bucks with 'Back to the Future' nostalgia

Russian Cosmonauts Taste 160 Meals Ahead of Space Station Expedition

NASA, Israel ink space cooperation agreement

Magnetic sail tech alternative to rocket-based space travel

ICE WORLD
Latest Mars film bespeaks potential of China-U.S. space cooperation

Exhibition on "father of Chinese rocketry" opens in U.S.

The First Meeting of the U.S.-China Space Dialogue

China's new carrier rocket succeeds in 1st trip

ICE WORLD
RSC Energia patented inflatable space module for ISS

Clearing the Space Fog on ISS

International Space Agencies Meet to Advance Space Exploration

Meet the International Docking Adapter

ICE WORLD
China puts new communication satellite into orbit for HK company

ISRO to Launch 6 Singapore Satellites in December

ILS Proton Launches Turksat 4B

Both passengers for next Ariane 5 mission arrive in French Guiana

ICE WORLD
Airbus DS ready to start testing exoplanet tracker CHEOPS

Hubble Telescope Spots Mysterious Space Objects

Exoplanet Anniversary: From Zero to Thousands in 20 Years

Mysterious ripples found racing through planet-forming disc

ICE WORLD
'Molecular accordion' drives thermoelectric behavior in promising material

Is black phosphorous the next big thing in materials

Mode control for square microresonator lasers suitable for integration

Boeing showcases lightest metal ever









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.