Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
For platinum catalysts, tiny squeeze gives big boost in performance
by Staff Writers
Stanford CA (SPX) Nov 25, 2016


Haotian Wang and his Stanford colleagues developed a new way to fine-tune platinum catalysts in fuel cells and other clean-energy technologies. Image courtesy L.A. Cicero/Stanford News Service. For a larger version of this image please go here.

A nanosize squeeze can significantly boost the performance of platinum catalysts that help generate energy in fuel cells, according to a new study by Stanford scientists. The team bonded a platinum catalyst to a thin material that expands and contracts as electrons move in and out, and found that squeezing the platinum a fraction of a nanometer nearly doubled its catalytic activity. The findings are published in the Nov. 25 issue of the journal Science.

"In this study, we present a new way to fine-tune metal catalysts at the atomic scale," said lead author Haotian Wang, a former graduate student at Stanford now at Harvard University. "We found that ordinary battery materials can be used to control the activity of platinum and possibly for many other metal catalysts."

The new technique can be applied to a wide range of clean technologies, Wang said, including fuel cells that use platinum catalysts to generate energy, and platinum electrolyzers that split water into oxygen and hydrogen fuel.

"Our tuning technique could make fuel cells more energy efficient and increase their power output," said co-author Yi Cui, a professor of materials science and engineering at Stanford and of photon science at the SLAC National Accelerator Laboratory. "It could also improve the hydrogen-generation efficiency of water splitters and enhance the production of other fuels and chemicals."

Electronic structure
Catalysts are used to make chemical reactions go faster while consuming less energy. The performance of a metal catalyst depends on its electronic structure - that is, how the electrons orbiting individual atoms are arranged.

"The electronic structure of a catalyst needs to match the molecule of interest in order to achieve the chemical reaction you want," Wang explained. "You can adjust the electronic structure of a catalyst by compressing the atoms or pulling them apart."

The Stanford team introduced a novel way to compress or separate the atoms by 5 percent, a mere 0.01 nanometer.

"That might not seem like much, but it's really a lot," Cui said. "How did we achieve that? It's really a marriage of battery research and catalysis."

Experimental electrode
The study focused on lithium cobalt oxide, a material widely used in batteries for cellphones and other electronic devices. The researchers stacked several layers of lithium cobalt oxide together to form a battery-like electrode.

"Applying electricity removes lithium ions from the electrode, causing it to expand by 0.01 nanometer," Cui said. "When lithium is reinserted during the discharge phase, the electrode contracts to its original size."

For the experiment, the Stanford team added several layers of platinum to the lithium cobalt oxide electrode.

"Because platinum is bonded to the edge, it expands with the rest of the electrode when electricity is added and contracts during discharge," Cui said.

Performance
Separating the platinum layers a distance of 0.01 nanometer, or 5 percent, had a significant impact on performance, Wang said.

"We found that compression makes platinum much more active," he said. "We observed a 90 percent enhancement in the ability of platinum to reduce oxygen in water. This could improve the efficiency of hydrogen fuel cells."

Stretching the electrode by 5 percent had the opposite effect, suppressing oxygen production by 40 percent, Wang said.

"This is a dream experiment for a theorist," said study co-author Jens Norskov, a professor of chemical engineering at Stanford's SUNCAT Center for Interface Science and Catalysis. "We predicted theoretically some years ago that straining a catalyst can be used to control its performance, and here is the experiment to show that our theory works well."

"Our technology offers a very powerful way to controllably tune catalytic behavior," Cui added. "Now, mediocre catalysts can become good, and good catalysts can become excellent."


Comment on this article using your Disqus, Facebook, Google or Twitter login.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Stanford University
Space Technology News - Applications and Research






Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Calculations predict unexpected disorder in the surface of polar materials
Tarragona, Spain (SPX) Nov 22, 2016
The small units that constitute materials are ordered in their surfaces. The knowledge of the surface structure allows scientists to predict their properties so they can be tuned to our needs. Nevertheless, reality is more complex. The group of Professor Nuria Lopez at ICIQ in Catalonia has found, through massive simulations, that in certain surfaces disorder is intrinsic and therefore the ... read more


TECH SPACE
China sets patent filing record: UN

ESA astronaut Thomas Pesquet arrives at the International Space Station

Moscow to mull building Russian orbital station in Spring 2017

New crews announced for Space Station

TECH SPACE
Star One D1 arrives for heavy-lift Ariane 5 in Dec with 2 SSL-built satellites

SLS propulsion system goes into Marshall stand ahead of big test series

Predictive modeling for NASA's Entry, Descent, and Landing Missions

Arianespace doubles its Galileo delivery capacity with Ariane 5

TECH SPACE
ESA's new Mars orbiter prepares for first science

NASA field test focuses on science of lava terrains, like Early Mars

Can we grow potatoes on Mars

Dutch firm unveils concept space suit for Mars explorers

TECH SPACE
Material and plant samples retrieved from space experiments

Chinese astronauts return to earth after longest mission

China completes longest manned space mission yet

Chinese astronauts accept 1st earth-space interview

TECH SPACE
Charyk helped chart the course of satellite communications

Intelsat and Intelsat General support hurricane Matthew recovery efforts

Boeing to consolidate defense and space sites

Can India beat China at its game with common satellite for South Asia

TECH SPACE
NASA microthrusters achieve success on ESA's LISA Pathfinder

Sweden orders new laser simulators from Saab

Calculations predict unexpected disorder in the surface of polar materials

New clues emerge in 30-year-old superconductor mystery

TECH SPACE
Scientists from the IAC discover a nearby 'superearth'

Earth-bound instrument analyzes light from planets circling distant stars

Protoplanetary Discs Being Shaped by Newborn Planets

Scientists unveil latest exoplanet-hunter CHARIS

TECH SPACE
New analysis adds to support for a subsurface ocean on Pluto

Pluto follows its cold, cold heart

New Analysis Supports Subsurface Ocean on Pluto

Mystery solved behind birth of Saturn's rings




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement