Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. 24/7 Space News .




ROBO SPACE
Flexing fingers for micro-robotics: Berkeley Lab scientists create a powerful, microscale actuator
by Staff Writers
Berkeley CA (SPX) Dec 20, 2012


A pulse of laser light can induce the microactuator to flex. In this microscope image, a palm-like array of actuators flex one at a time (top panel) or all at once (middle panel). The lower panel shows individual fingers flexing underwater - a capability that makes the device suitable for biological applications. Credit: Lawrence Berkeley National Lab.

Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California, Berkeley, have developed an elegant and powerful new microscale actuator that can flex like a tiny beckoning finger.

Based on an oxide material that expands and contracts dramatically in response to a small temperature variation, the actuators are smaller than the width of a human hair and are promising for microfluidics, drug delivery, and artificial muscles.

"We believe our microactuator is more efficient and powerful than any current microscale actuation technology, including human muscle cells," says Berkeley Lab and UC Berkeley scientist Junqiao Wu.

"What's more, it uses this very interesting material-vanadium dioxide-and tells us more about the fundamental materials science of phase transitions."

Wu is corresponding author of a paper appearing in Nano Letters this month that reports these findings, titled "Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs."

As often happens in science, Wu and his colleagues arrived at the microactuator idea by accident, while studying a different problem.

Vanadium dioxide is a textbook example of a strongly correlated material, meaning the behavior of each electron is inextricably tied to its neighboring electrons.

The resulting exotic electronic behaviors have made vanadium dioxide an object of scientific scrutiny for decades, much of it focused on an unusual pair of phase transitions.

When heated past 67 degrees Celsius, vanadium dioxide transforms from an insulator to a metal, accompanied by a structural phase transition that shrinks the material in one dimension while expanding in the other two.

For decades, researchers have debated whether one of these phase transitions drives the other or if they are separate phenomena that coincidentally occur at the same temperature.

Wu shed light on this question in earlier work published in Physical Review Letters, in which he and his colleagues isolated the two phase transitions in single-crystal nanowires of vanadium dioxide and demonstrated that they are separable and can be driven independently.

The team ran into difficulty with the experiments, however, when the nanowires broke away from their electrode contacts during the structural phase transition.

"At the transition, a 100-micron long wire shrinks by about 1 micron, which can easily break the contact," says Wu, who has a dual appointment as a professor in UC Berkeley's department of Materials Sciences and Engineering.

"So we started to ask the question: this is bad, but can we make a good thing out of it? And actuation is the natural application."

To take advantage of the shrinkage, the researchers fabricated a free-standing strip of vanadium dioxide with a chromium metal layer on top. When the strip is heated via a small electrical current or a flash of laser light, the vanadium dioxide contracts and the whole strip bends like a finger.

"The displacement of our microactuator is huge," says Wu, "tens of microns for an actuator length on the same order of magnitude-much bigger than you can get with a piezoelectric device-and simultaneously with very large force. I am very optimistic that this technology will become competitive to piezoelectric technology, and may even replace it."

Piezoelectric actuators are the industry-standard for mechanical actuation on micro scales, but they're complicated to grow, need large voltages for small displacements, and typically involve toxic materials such as lead.

"But our device is very simple, the material is non-toxic, and the displacement is much bigger at a much lower driving voltage," says Wu.

"You can see it move with an optical microscope! And it works equally well in water, making it suitable for biological and microfluidic applications."

The researchers envision using the microactuators as tiny pumps for drug delivery or as mechanical muscles in micro-scale robots.

In those applications, the actuator's exceptionally high work density-the power it can deliver per unit volume-offers a great advantage. Ounce for ounce, the vanadium-dioxide actuators deliver a force three orders of magnitude greater than human muscle.

Wu and his colleagues are already partnering with the Berkeley Sensing and Actuation Center to integrate their actuators into devices for applications such as radiation-detection robots for hazardous environments.

The team's next goal is to create a torsion actuator, which is a much more challenging prospect. Wu explains: "Torsion actuators typically involve a complicated design of gears, shafts and/or belts, and so miniaturization is a challenge. But here we see that with just a layer of thin-film we could also make a very simple torsional actuator."

The Nano Letters paper was coauthored by Kai Liu, Chun Cheng, Zhenting Cheng, Kevin Wang, and Ramamoorthy Ramesh. Wu's earlier work on separating phase transitions in vanadium dioxide appears in Physical Review Letters, titled "Decoupling of Structural and Electronic Phase Transitions in VO2," and is coauthored by Zhensheng Tao, Tzong-Ru T. Han, Subhendra D. Mahanti, Phillip M. Duxbury, Fei Yuan, and Chong-Yu Ruan, and Kevin Wang.

For a video of this work click here. "Giant-Amplitude, High-Work Density Microactuators with Phase Transition Activated Nanolayer Bimorphs"; "Decoupling of Structural and Electronic Phase Transitions in VO2"

.


Related Links
Lawrence Berkeley National Laboratory
All about the robots on Earth and beyond!






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ROBO SPACE
CU-Boulder team develops swarm of pingpong ball-sized robots
Boulder CO (SPX) Dec 19, 2012
University of Colorado Boulder Assistant Professor Nikolaus Correll likes to think in multiples. If one robot can accomplish a singular task, think how much more could be accomplished if you had hundreds of them. Correll and his computer science research team, including research associate Dustin Reishus and professional research assistant Nick Farrow, have developed a basic robotic buildin ... read more


ROBO SPACE
GRAIL Lunar Impact Site Named for Astronaut Sally Ride

NASA probes crash into the moon

No plans of sending an Indian on moon

Rocket Burn Sets Stage for Dynamic Moon Duos' Lunar Impact

ROBO SPACE
Enabling ChemCam to Measure Key Isotopic Ratios on Mars and Other Planets

Curiosity Rover Explores 'Yellowknife Bay'

Curious About Life: Interview with Darby Dyer

Opportunity Checking Out Some Rocks At Matijevic Hill

ROBO SPACE
TDRS-K Arrives at Kennedy for Launch Processing

Sierra Nevada Corporation Selected by NASA to Receive Human Spaceflight Certification Products Contract

NASA Progressing Toward First Launch of Orion Spacecraft

New member of the exclusive space club

ROBO SPACE
Mr Xi in Space

China plans manned space launch in 2013: state media

China to launch manned spacecraft

Tiangong 1 Parked And Waiting As Shenzhou 10 Mission Prep Continues

ROBO SPACE
New Trio Launches to Join Expedition 34

Medical Ops, Fan Checks for Space Crew; New Trio Checks Soyuz

Khrunichev Completes Nauka Space Station Module

New Crew of ISS to Perform Two Spacewalks

ROBO SPACE
Payload integration complete for final 2012 Ariane 5 mission

Arctic town eyes future as Europe's gateway to space

ISRO planning 10 space missions in 2013

Russia works to fix satellite's off-target orbit

ROBO SPACE
Venus transit and lunar mirror could help astronomers find worlds around other stars

Astronomers discover and 'weigh' infant solar system

Search for Life Suggests Solar Systems More Habitable than Ours

Do missing Jupiters mean massive comet belts?

ROBO SPACE
Apple "pinch-to-zoom" patent deemed invalid

Google sells Motorola Mobility Home for $2.35 bn

Bubble study could improve industrial splash control

Missile Defense Agency awards Raytheon contract modification for AN/TPY-2 radar




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement