. 24/7 Space News .
STELLAR CHEMISTRY
First finding of China's DAMPE may shed light on dark matter research
by Staff Writers
Beijing, China (SPX) Nov 30, 2017


DAMPE in orbit

The Dark Matter Particle Explorer (DAMPE, also known as Wukong) mission published its first scientific results on Nov. 30 in Nature, presenting the precise measurement of cosmic ray electron flux, especially a spectral break at ~0.9 TeV. The data may shed light on the annihilation or decay of particle dark matter.

DAMPE is a collaboration of more than a hundred scientists, technicians and students at nine institutes in China, Switzerland and Italy, under the leadership of the Purple Mountain Observatory (PMO) of the Chinese Academy of Sciences (CAS). The DAMPE mission is funded by the strategic priority science and technology projects in space science of CAS.

DAMPE, China's first astronomical satellite, was launched from China's Jiuquan Satellite Launch Center into sun-synchronous orbit on Dec. 17th, 2015. At an altitude of about 500 km, DAMPE has been collecting data since a week after its launch.

In its first 530 days of science operation through June 8 of this year, DAMPE has detected 1.5 million cosmic ray electrons and positrons above 25 GeV. The electron and positron data are characterized by unprecedentedly high energy resolution and low particle background contamination.

The spectral data in the energy range of 55 GeV-2.63 TeV strongly prefer a smoothly broken power-law model to a single power-law model.

DAMPE has directly detected a spectral break at ~0.9 TeV, with the spectral index changing from ~3.1 to ~3.9. The precise measurement of the cosmic ray electron and positron spectrum, in particular the flux declination at TeV energies, considerably narrows the parameter space of models such as nearby pulsars, supernova remnants, and/or candidates for particle dark matter that were proposed to account for the "positron anomaly" revealed previously by PAMELA and AMS-02, according to FAN Yizhong, deputy chief designer of DAMPE's scientific application system.

"Together with data from the cosmic microwave background experiments, high energy gamma-ray measurements, and other astronomical telescopes, the DAMPE data may help to ultimately clarify the connection between the positron anomaly and the annihilation or decay of particle dark matter," said FAN.

Data also hint at the presence of spectral structure between 1 and 2 TeV energies - a possible result of nearby cosmic ray sources or exotic physical processes. Yet, more data are definitely required to explore this phenomenon.

DAMPE has recorded over 3.5 billion cosmic ray events, with maximum event energies exceeding ~100 trillion electronvolts (TeV). DAMPE is expected to record more than 10 billion cosmic ray events over its useful life - projected to exceed five years given the current state of its instruments.

More statistics will allow more precise measurement of the cosmic ray electron and positron spectrum up to ~10 TeV. Scientists will also be able to explore spectral features potentially generated by dark matter particle annihilation/decay or nearby astrophysical sources, e.g., pulsars.

The DAMPE results reported here demonstrate the unique capability of DAMPE to explore possible new physics and/or new astrophysics in the TeV energy window, thanks to its high energy resolution, large instrumental acceptance, wide energy coverage, excellent electron/proton separation power, and long working life.

DAMPE's first scientific result is a milestone for the international collaboration. The mission will continue to study galactic cosmic rays up to ~10 TeV for electrons/gamma-rays and hundreds of TeV for nuclei, respectively. DAMPE data is expected to reveal new phenomena of the universe in the TeV window.

STELLAR CHEMISTRY
Dark matter and dark energy: do they really exist?
Geneva, Switzerland (SPX) Nov 23, 2017
A University of Geneva researcher has recently shown that the accelerating expansion of the universe and the movement of the stars in the galaxies can be explained without drawing on the concepts of dark matter and dark energy... which might not actually exist. For close on a century, researchers have hypothesised that the universe contains more matter than can be directly observed, known as "d ... read more

Related Links
DAMPE at Chinese Academy of Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Building for a future in space: An interview with Dava Newman and Gui Trotti

Space Farms: 'Mark Watney in The Martian Was Right to Add Poop to the Soil'

New motion sensors major step towards cheaper wearable technology

Does the Outer Space Treaty at 50 need a rethink

STELLAR CHEMISTRY
ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

Mechanisms are critical to all space vehicles

Russia loses contact with satellite after launch from new spaceport

STELLAR CHEMISTRY
Earthworms can reproduce in Mars-like soil

Opportunity Greets Winter Solstice

NASA builds its next Mars rover mission

Scientists developed a new sensor for future missions to the Moon and Mars

STELLAR CHEMISTRY
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

STELLAR CHEMISTRY
Going green to the Red Planet

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

Need to double number of operational satellites: ISRO chief

STELLAR CHEMISTRY
Quantum optics allows us to abandon expensive lasers in spectroscopy

Spin current from heat: New material increases efficiency

New catalyst controls activation of a carbon-hydrogen bond

Math gets real in strong, lightweight structures

STELLAR CHEMISTRY
Scientists identify key factors that help microbes thrive in harsh environments

Exoplanet Has Smothering Stratosphere Without Water

Scientists study Earth's earliest life forms in Nevada hot spring

Traces of life on nearest exoplanets may be hidden in equatorial trap

STELLAR CHEMISTRY
Pluto's hydrocarbon haze keeps dwarf planet colder than expected

Jupiter's Stunning Southern Hemisphere

Watching Jupiter's multiple pulsating X-ray Aurora

Help Nickname New Horizons' Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.