Subscribe free to our newsletters via your
. 24/7 Space News .




OUTER PLANETS
First Team To Study A Kuiper Belt Object During A Stellar Occultation
by Staff Writers
Boston MA (SPX) Jun 17, 2010


The trick is to know enough about the orbit of a KBO to be able to predict its path and observe it as it passes in front of a star.

Until now, astronomers have used telescopes to find Kuiper Belt objects (KBOs), moon-sized bodies, and obtain their spectra to determine what types of ices are on their surface. They have also used thermal-imaging techniques to get a rough idea of the size of KBOs, but other details have been difficult to glean.

While astronomers think there are about 70,000 KBOs that are larger than 100 kilometers in diameter, the objects' relatively small size and location make it hard to study them in detail.

One method that has been has been proposed for studying KBOs is to observe one as it passes briefly in front of a bright star; such events, known as stellar occultations, have yielded useful information about other planets in the solar system.

By monitoring the changes in starlight that occur during an occultation, astronomers can determine the object's size and temperature, whether it has any companion objects and if it has an atmosphere.

The trick is to know enough about the orbit of a KBO to be able to predict its path and observe it as it passes in front of a star. This was done successfully for the first time last October when a team of 18 astronomy groups led by James Elliot, a professor of planetary astronomy in MIT's Department of Earth, Atmospheric and Planetary Sciences, observed an occultation by an object named "KBO 55636."

As Elliot and his colleagues report in a paper published to be published June 17 in Nature, the occultation provided enough data to determine the KBO's size and albedo, or how strongly it reflects light. The surface of 55636 turns out to be as reflective as snow and ice, which surprised the researchers because ancient objects in space usually have weathered, dull surfaces.

The high albedo suggests that the KBO's surface is made of reflective water-ice particles, and that would support a theory about how the KBO formed. Many researchers believe there was a collision that occurred one billion years ago between a dwarf planet in the Kuiper Belt known as Haumea and another object that caused Haumea's icy mantle to break into a dozen or so smaller bodies, including 55636.

More importantly, the research demonstrates that astronomers can predict occultations accurately enough to contribute to a new NASA mission known as the Stratospheric Observatory For Infrared Astronomy (SOFIA) that completed its first in-flight observations in May.

A Boeing 747SP aircraft that has a large telescope mounted onto its rear fuselage, SOFIA can record infrared measurements of celestial objects that are not possible from the ground. Elliot hopes his research will help guide future flights of SOFIA to observe stellar occultations in detail.

Elliot, who has been studying 55636's orbit for five years, thought it would most likely pass in front of an unnamed star on Oct. 9, 2009. But the KBO's small size made it difficult to predict exactly where the object would travel, and so, to be on the safe side, he and his colleagues assembled a network of 18 observation stations along a 5,900-kilometer stretch of the Earth's surface that corresponded to the KBO's predicted shadow path. Such a strategy "covered our uncertainty about where the path would go, both to the north and to the south," Elliot explains. "It was our way of hedging our bets."

While some of the stations couldn't observe because of weather, and others simply didn't detect the occultation, two stations in Hawaii captured data on the changes in starlight that occurred during the roughly 10-second occultation. After measuring the exact amount of time that the star was blocked from view, as well as the velocity with which the shadow of 55636 moved across Earth, the researchers calculated that the KBO has a radius of about 143 kilometers. Knowing this, they could then calculate the object's albedo.

The highly reflective surface of 55636 is perplexing because the surfaces of celestial bodies in the outer solar system are supposed to darken over time as a result of dust accumulation and exposure to solar radiation.

Although other highly reflective bodies in the solar system, such as the dwarf planet Pluto and Saturn's moon Enceladus, have their surfaces continuously renewed with fresh ice from the condensation of atmospheric gases or by volcanic activity that spews water instead of lava, 55636 is too small for these mechanisms to be at work, says Elliot. He has no plans to investigate the cause of the high albedo but will continue to collect data about the orbits and positions of the largest KBOs in order to predict future occultations with enough accuracy that he doesn't have to rely on a vast network of observers.

.


Related Links
Massachusetts Institute of Technology
The million outer planets of a star called Sol






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








OUTER PLANETS
Distant rock caught by Earth-bound telescopes
Paris (AFP) June 16, 2010
In a technical feat, astronomers measured the size of a small rock six billion kilometers (3.75 billion miles) away to an accuracy of a few kilometers and found its surface to be a mysterious ice-like white. Years of planning combined with a network of telescopes to grab the first pictures of the Kuiper Belt Object (KBO) through a method of celestial alignment, they reported on Wednesday in ... read more


OUTER PLANETS
Water Content Of Moon's Interior Underestimated

Model Helps Search For Moon Dust Fountains

NASA Langley to Break Ground on Hydro Impact Basin

The Earth And Moon Formed Later Than Previously Thought

OUTER PLANETS
UK Space Agency Funds International Mars Rover

NASA Dryden Hosts Radar Tests For Next Mars Landing

Spirit Remains Silent At Troy

Ancient Ocean May Have Covered One-Third Of Mars

OUTER PLANETS
Japan's 'space yacht' starts sailing

Elbit Systems To Unveil EoShiel

Continued Development On 18 Small Business Tech Transfer Projects

ESA Astronauts At ILA In Berlin

OUTER PLANETS
China Sends Research Satellite Into Space

China eyes Argentina for space antenna

Seven More For Shenzhou

China Signs Up First Female Astronauts

OUTER PLANETS
New ISS Crew Members Prepare For Docking

Three New Crew Members En Route To ISS

Russian, US astronauts blast off to ISS: television

Rocket in place for space station mission

OUTER PLANETS
Iridium And SpaceX Sign Major Commercial Launch Contract

Successful Launch Of Swedish Prisma satellites

South Korea Delays Rocket Launch

SpaceX Achieves Orbital Bullseye With Inaugural Flight Of Falcon 9 Rocket

OUTER PLANETS
Kepler Data On Potential Extrasolar Planets Released

CoRoT Unveils A Rich Assortment Of New Exoplanets

Exoplanet Caught On The Move

'Out Of Whack' Planetary System

OUTER PLANETS
San Francisco passes mobile phone radiation law

Asian technology firms bet on a 3D future

Flotilla Of NRL Space Sensors Study Upper Atmosphere

RIM making new touchscreen smartphone, tablet device: WSJ




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement