. 24/7 Space News .
First Ground-Based Detection Of Extra-Solar Planet Atmsosphere Using Hobby-Eberly Telescope

Seth Redfield used HET's High Resolution Spectrograph to detect the well-known signature of sodium, a pair of absorption lines known as a "doublet," at specific wavelengths (indicated here in angstroms) in the atmosphere of the extra-solar planet HD189733b. Credit: S. Redfield/T. Jones/McDonald Obs.
by Staff Writers
Fort Davis TX (SPX) Dec 07, 2007
University of Texas at Austin astronomer and Hubble Fellow Seth Redfield has used the Hobby-Eberly Telescope (HET) at McDonald Observatory to make the first ground-based detection of the atmosphere of a planet outside our solar system.

"It's a remarkable pioneering discovery," said McDonald Observatory Director David L. Lambert.

The work is an incremental step in finding life in the universe, falling between the initial detections of planets around other stars (known as 'extra-solar planets' or 'exoplanets'), and the anticipated discovery of planets similar to Earth.

"What we all want to find is a planet with an Earth-like atmosphere," Redfield said.

The planet Redfield studied orbits HD189733, a star about 63 light-years away in the constellation Vulpecula, the little fox. But it's not like Earth. The planet is 20 percent more massive than Jupiter, and orbits very close to its parent star (more than 10 times closer than Mercury is to our Sun).

From Earth's line of sight, the planet passes directly in front of the star on each orbit. It was this 'transit' property that allowed the planet's discovery in 2004 by Francois Bouchy of France's Laboratoire d'Astrophysique de Marseille, and the detection of its atmosphere in 2007 by Redfield. His team for this project included University of Texas at Austin astronomers Michael Endl, William Cochran and Lars Kosterke.

That means this planet, HD189733b, is what's known as a 'transiting extra-solar planet.'

Astronomers have only once before detected the atmosphere of a planet orbiting another star in such a way, using a now inoperable instrument on Hubble Space Telescope, the Space Telescope Imaging Spectrograph (STIS).

"STIS broke soon after the detection, and there was no capability to do this from space. Ground-based observations are the only option at this time," Redfield said.

The feat has been tried unsuccessfully several times from the ground in recent years, he said. In most cases, astronomers had studied their target stars through only one transit.

"I knew we had to take it one step further," Redfield said. "I knew that we would probably have to go for many transits" to detect the atmosphere. He studied 11 transits over the course of a year with HET and its High Resolution Spectrograph.

To obtain the planet's 'transmission spectrum,' and thus the chemical composition of its atmosphere, he used what he called "a very straightforward" technique.

"Take a spectrum of the star when the planet is in front of the star," he said. "Then take a spectrum of the star when it's not. Then you divide the two and get the planet's atmospheric transmission spectrum."

Straightforward, but not easy. The light blocked by the planet is a mere 2.5 percent of the star's total light, plus another 0.3 percent for the planet's atmosphere.

"Each time the planet passes in front of the star," Redfield said, "the planet blocks some of the star's light. If the planet has no atmosphere, it will block the same amount of light at all wavelengths. However, if the planet has an atmosphere, gasses in its atmosphere will absorb some additional light."

It was predicted that sodium atoms should be present in the atmosphere. The atmosphere of the planet will absorb more starlight at those wavelengths that correspond to specific transitions of the sodium atom.

"This causes the planet to appear larger, since we now 'see' the planet plus the atmosphere, and we measure more blocked light from the star," Redfield said.

When studying the planet at the particular wavelength of the sodium transition, the planet appears about 6 percent larger than at other wavelengths. The detection of sodium was possible because there's a lot of it there, and the atomic transition is strong and falls within the visual range that ground-based telescopes can detect.

"Many other atomic and molecular constituents of the atmosphere may be studied in a similar way, including potassium and hydrogen," Redfield said.

"I look forward to the detection of other gasses around this planet," Lambert said. And, "I wish every success for Seth as he chases oxygen, water vapor and other molecules -- indicators of life -- around planets far more accommodating to life than this one."

The data analysis involved studying hundreds of observations spread over a year, taken under different conditions. Redfield and his collaborators removed contamination to the data caused by water vapor in Earth's own atmosphere, modeled how the star itself may have contributed to their measurements, and more, to make sure their detection was sound.

In the end, the extra-solar planet's'transmission spectrum' from HET was much higher resolution than that previously made with Hubble Space Telescope on a different planet.

"I was actually surprised and encouraged that it was even possible," Redfield said. "We've proved that it's possible. Let's start doing this for other transiting planets. Let's start doing 'comparative exoplanetology'."

"It is just breathtaking how fast the progress in the field of exoplanets is," said Redfield's collaborator, Michael Endl.

"We have arrived at a point where we can study the composition of the atmospheres of 'hot Jupiters' in great detail. The HET is not only a planet finder now, but also a great tool to examine the atmospheric features of transiting extrasolar planets with unprecedented resolution. I can't wait to see how the results for the other planets will compare to our initial findings."

Redfield said HET can study the atmospheres of many of the brightest transiting planets.

The Hobby-Eberly Telescope is a joint project of The University of Texas at Austin, The Pennsylvania State University, Stanford University, Ludwig-Maximilians-Universitaet Muenchen, and Georg-August-Universitaet Goettingen.

Community
Email This Article
Comment On This Article

Related Links
University of Texas at Austin
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


When Do Gas Giants Reach The Point Of No Return
London, UK (SPX) Dec 06, 2007
Planetary scientists at UCL have identified the point at which a star causes the atmosphere of an orbiting gas giant to become critically unstable, as reported in this week's Nature (December 6). Depending upon their proximity to a host star, giant Jupiter-like planets have atmospheres which are either stable and thin, or unstable and rapidly expanding. This new research enables us to work out whether planets in other systems are stable or unstable by using a three dimensional model to characterise their upper atmospheres.







  • Quails for lunch aboard Atlantis
  • Richard Branson Trains For Virgin Galactic Spaceflight At The NASTAR Center
  • MU Engineers Develop Software Solution For Complex Space Missions
  • Star Talk

  • NASA Study Reveals Less Water In Clouds Of Mars
  • Multi-Tasking Rover Supports Multiple Missions
  • Spirit Breaks Free In Race For Survival
  • Noctis Labyrinthus, Labyrinth Of The Night

  • ATK Receives Contract And Delivers 100th Orion Solid Rocket Motor
  • Arianespace warns US over Chinese space 'dumping'
  • Sea Launch Reschedules The Thuraya-3 Launch Campaign
  • Sea Launch Reschedules The Thuraya-3 Launch Campaign

  • Outside View: Russia's new sats -- Part 2
  • Use Space Technology And IT For Rural Development
  • China, Brazil give Africa free satellite land images
  • Ministerial Summit On Global Earth Observation System Of Systems

  • The PI's Perspective: Autumn 2007: Onward to the Kuiper Belt
  • Data For The Next Generations
  • Goddard Instrument Makes Cover Of Science
  • Checking Out New Horizons

  • Supercomputer Simulation Of Universe Will Search For Missing Matter
  • Astronomers Find Puzzling Dwarf Star With Complex Magnetic Fields
  • NASA Mega-Telescope Gears Up To Study Cosmos
  • UBC Astronomers Discover How White Dwarf Stars Get Their Kicks

  • Planetary Society Joins Private Effort For Moon Mission
  • Whittaker And Raytheon Collaborate To Pursue Google Lunar X Prize
  • Moon Race Motives Part 2
  • Moon Race Motives Part One

  • Swedish Space Takes Major Role In Galileo Satellite Navigation Project
  • EU rallies Spain to clinch unanimous Galileo deal
  • EU nations 'close' to political agreement on satnav project
  • The Hills And Valleys Of Earth's Largest Salt Flat

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement