. 24/7 Space News .
STELLAR CHEMISTRY
Fermi-type acceleration of interstellar ions driven by high-energy lepton plasma flows
by Staff Writers
Beijing, China (SPX) Dec 04, 2015


This is a snapshot of plasma turbulence and ion acceleration at the first stage. Image courtesy Science China Press. For a larger version of this image please go here.

Stochastic acceleration and shock acceleration are well recognized as key mechanisms for cosmic ray generation since first proposed by Fermi. So far, these two mechanisms have been investigated widely by analytical models and numerical simulations, but often modeled separately.

In a recent paper published in Science China Physics, Mechanics and Astronomy 58(10), 105201 (2015) by Cui et al., it is found that the two mechanisms can occur naturally in sequential two stages when a lepton flow propagates in a background interstellar plasma.

Even though, many theory models have been proposed for stochastic acceleration and shock acceleration to develop, but practically it is very difficult to verify these models based upon current astronomical observations. In the last decade, there is increasing interest to test some theory models in laboratory, which has brought about a new field called laboratory astrophysics.

In particular, the development of high power laser technologies enables one to create a variety of unique conditions to mimic some astrophysical processes in much reduced temporal and spatial scales.

For example, some recent studies suggest that a lepton flow composed of dense electron and positron beams may be generated from relativistic laser-plasma interaction. Electron-positron jets are found widely in astrophysical environments such as quasars, black holes.

In their work, Cui et al. found that an electron-positron jet can drive a type of beam-plasma instabilities called the Weibel instability when it transports through a background plasma composed of electrons and ions.

Strong electromagnetic turbulences develop as a result of the Weibel instability, which can accelerate background ions effectively. The accelerated ions form a perfect inverse-power energy spectrum as expected for Fermi II type acceleration.

After certain interaction period, the electron-positron jet further drives a collisionless shock wave in the second stage. Some ions can be trapped and accelerated further. This is the first time that the two acceleration mechanisms for energetic ions are illustrated clearly in a simple interaction configuration.

According to Prof. Z.M. Sheng, the corresponding author of this article from Shanghai Jiao Tong University and University of Strathclyde, the acceleration scenario found from their numerical simulations could be tested in the near future given the fact that high current electron-positron beams have been demonstrated recently in some laser-plasma experiments with high power lasers.

Three years ago, Prof. Sheng and his collaborator Prof. G. R. Kumar from Tata Institute for Fundamental Research in India first reported the measurement of the turbulent magnetic field structures generated via the Weibel instability when a dense electron beam transports through a metal [PNAS 109, 8011-8015 (2012)].

Detection of ion acceleration from Fermi acceleration in laboratory would be extremely interesting and is highly valuable to our understanding of the origin of cosmic-rays, according to Prof. Kumar.

When commenting on this work, Prof. J. Zhang from Shanghai Jiao Tong University, who is one of the pioneers in promoting laboratory astrophysics in China, pointed out that this work not only revealed very important new physics related to beam transport and Fermi acceleration, but also suggested the great potential of laboratory astrophysics for scientific discoveries.

Y.Q. Cui, Z.M. Sheng, Q.M. Lu, Y.T. Li, J. Zhang , "Two-stage acceleration of interstellar ions driven by high-energy lepton plasma flows", Sci China-Phys Mech Astron 58, 105201(2015), doi: 10.1007/s11433-015-5715-2


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Science China Press
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
STELLAR CHEMISTRY
Japanese, Canadian win Nobel Physics Prize
Stockholm (AFP) Oct 6, 2015
Takaaki Kajita of Japan and Arthur McDonald of Canada were awarded the Nobel Physics Prize on Tuesday for resolving a mystery about neutrinos, a fundamental but enigmatic particle. The pair were honoured for work that helped determine that neutrinos have mass, the Royal Swedish Academy of Sciences said. "The discovery has changed our understanding of the innermost workings of matter and ... read more


STELLAR CHEMISTRY
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

STELLAR CHEMISTRY
European payload selected for ExoMars 2018 surface platform

ExoMars has historical, practical significance for Russia, Europe

ExoMars prepares to leave Europe for launch site

Tracking down the 'missing' carbon from the Martian atmosphere

STELLAR CHEMISTRY
Orion's power system to be put to the test

The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

STELLAR CHEMISTRY
China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

STELLAR CHEMISTRY
Getting Into the Flow on the ISS

Orbital to fly first space cargo mission since 2014 explosion

Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

STELLAR CHEMISTRY
"Cyg"-nificant Science Launching to Space Station

Arianespace selected to launch Azerspace-2/Intelsat 38 satellites

Aerojet Rocketdyne completes AJ60 solid booster for Atlas V launcher

Orbital ATK's cargo delivery mission to ISS set for Launch

STELLAR CHEMISTRY
Half of Kepler's giant exoplanet candidates are false positives

Exiled exoplanet likely kicked out of star's neighborhood

Neptune-size exoplanet around a red dwarf star

Retro Exo and Its Originators

STELLAR CHEMISTRY
Cryogenic testing from 1964 to the James Webb Space Telescope

Aerojet Rocketdyne completes build of 3-D printed parts for Orion spacecraft

SSL selected to provide new high throughput satellite to Telesat

Satellite Spectrum Is Central To Future Vision For Global Connectivity









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.