Subscribe free to our newsletters via your
. 24/7 Space News .

Subscribe free to our newsletters via your

Faults control the amount of water into the Earth during continental breakup
by Staff Writers
Southampton, UK (SPX) Mar 08, 2016

Ocean Bottom Seismometer on the F/S Poseidon.

New light has been shed on the processes by which ocean water enters the solid Earth during continental breakup. Research led by geoscientists at the University of Southampton, and published in Nature Geoscience this week, is the first to show a direct link on geological timescales between fault activity and the amount of water entering the Earth's mantle along faults.

When water and carbon is transferred from the ocean to the mantle it reacts with a dry rock called peridotite, which makes up most of the mantle beneath the crust, to form serpentinite.

Dr Gaye Bayrakci, Research Fellow in Geophysics, and Professor Tim Minshull, from Ocean and Earth Science, with colleagues at the University of Southampton and six other institutions, measured the amount of water that had entered the Earth by using sound waves to map the distribution of serpentinite.

The sound waves travel through the crust and mantle and can be detected by sensitive instruments placed on the ocean floor. The time taken for the signals to travel from an acoustic seismic source to the seafloor instruments reveals how fast sound travels in the rocks, and the amount of serpentinite present can be determined from this speed.

The four-month experiment, which involved two research ships (the R/V Marcus Langseth and the F/S Poseidon), mapped an 80 by 20 km area of seafloor west of Spain called the Deep Galicia Margin where the fault structures were formed when North America broke away from Europe about 120 million years ago.

The results showed that the amount of serpentinite formed at the bottom of each fault was directly proportional to the displacement on that fault, which in turn is closely related to the duration of fault activity.

Dr Bayracki said: "One of the aims of our survey was to explore the relationship between the faults, which we knew already were there, and the presence of serpentinite, which we also knew was there but knew little about its distribution. The link between fault activity and formation of serpentinite was something we might have hoped for but did not really expect to see so clearly.

"This implies that seawater reaches the mantle only when the faults are active and that brittle processes in the crust may ultimately control the global amount of seawater entering the solid Earth."

In other tectonic settings where serpentinite is present such as mid ocean ridges and subduction zones, the focused flow of seawater along faults provides a setting for diverse hydrothermal ecosystems where life-forms live off the chemicals stripped out of the rocks by the water as it flows into and then out of the Earth's mantle.

The researchers were able to estimate the average rate at which seawater entered the mantle through the faults at the Deep Galicia Margin and discovered that rate was comparable to those estimated for water circulation in hot rock at mid-ocean ridges, where such life-forms are more common. These results suggest that in continental rifting environment there may have been hydrothermal systems, which are known to support diverse ecosystems.

Co-Author and Professor of Geology at the University of Birmingham Tim Reston commented: "Understanding the transport of water during deformation has broad implications, ranging from hydrothermal systems to earthquake mechanics. The new results suggest a more direct link between faulting and water movements than we previously suspected."

Science paper 'Fault-controlled hydration of the upper mantle during rifting' Nature Geoscience DOI: 10.1038/ngeo267


Related Links
University of Southampton
Tectonic Science and News

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Previous Report
Mariana Trench: 7 miles deep, the ocean is still a noisy place
Newport OR (SPX) Mar 03, 2016
For what may be the first time, scientists have eavesdropped on the deepest part of the world's oceans and instead of finding a sea of silence, they discovered a cacophony of sounds both natural and caused by humans. For three weeks, a titanium-encased hydrophone recorded ambient noise from the ocean floor at a depth of more than 36,000 feet in a trough known as Challenger Deep in the fabl ... read more

China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

Great tilt gave Mars a new face

Space simulation crew hits halfway mark til August re-entry

Proton-M carrier rocket assembled ahead of Mars Mission

Monster volcano gave Mars extreme makeover: study

Sore, but no taller, astronaut Scott Kelly adjusts to Earth

Test Dummies to Help Assess Crew Safety in Orion

Commercial Crew: Building in Safety from the Ground Up in a Unique Way

Russian company set to usher in era of suborbital tourism

Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

China to Launch Over 100 Long March Rockets Within Five Years

Moving in to Tiangong 2

International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

At last second, SpaceX delays satellite launch again

Arianespace Soyuz to launch 2 Galileo satellites in May

Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

New radar system set for testing

Scaling up tissue engineering

UMass Amherst team offers new, simpler law of complex wrinkle patterns

How metal clusters grow

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

The content herein, unless otherwise known to be public domain, are Copyright 1995-2016 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.