Subscribe free to our newsletters via your
. 24/7 Space News .




STELLAR CHEMISTRY
'Faster-ticking clock' indicates early solar system may have evolved faster than we think
by Staff Writers
Jerusalem (SPX) May 02, 2012


Professor Michael Paul is an astrophysicist at the Hebrew University of Jerusalem. Credit: The Hebrew University of Jerusalem.

Our solar system is four and a half billion years old, but its formation may have occurred over a shorter period of time than we previously thought, says an international team of researchers from the Hebrew University of Jerusalem and universities and laboratories in the US and Japan..

Establishing chronologies of past events or determining ages of objects require having clocks that tick at different paces, according to how far back one looks. Nuclear clocks, used for dating, are based on the rate of decay of an atomic nucleus expressed by a half-life, the time it takes for half of a number of nuclei to decay, a property of each nuclear species.

Radiocarbon dating for example, invented in Chicago in the late 1940s and refined ever since, can date artifacts back to prehistoric times because the half-life of radiocarbon (carbon-14) is a few thousand years. The evaluation of ages of the history of earth or of the solar system requires extremely "slow-paced" chronometers consisting of nuclear clocks with much longer half-lives.

The activity of one of these clocks, known as nucleus samarium-146 (146Sm), was examined by Michael Paul, the Kalman and Malke Cooper Professor of Nuclear Physics at the Hebrew University of Jerusalem, as well as researchers from the University of Notre Dame and the Argonne National Laboratory in the US and from two Japanese universities.

146Sm belongs to a family of nuclear species which were "live" in our sun and its solar system when they were born. Events thereafter, and within a few hundred million years, are dated by the amount of 146Sm that was left in various mineral archives until its eventual "extinction."

146Sm has become the main tool for establishing the time evolution of the solar system over its first few hundred million years. This by itself owes to a delicate geochemical property of the element samarium, a rare element in nature. It is a sensitive probe for the separation, or differentiation, of the silicate portion of earth and of other planetary bodies.

The main result of the work of the international scientists, detailed in a recent article in the journal Science, is a new determination of the half-life of 146Sm, previously adopted as 103 million years, to a much shorter value of 68 million years.

The shorter half-life value, like a clock ticking faster, has the effect of shrinking the assessed chronology of events in the early solar system and in planetary differentiation into a shorter time span.

The new time scale, interestingly, is now consistent with a recent and precise dating made on a lunar rock and is in better agreement with the dating obtained with other chronometers.

The measurement of the half-life of 146Sm, performed over several years by the collaborators, involved the use of the ATLAS particle accelerator at Argonne National Laboratory in Illinois.

.


Related Links
The Hebrew University of Jerusalem
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








STELLAR CHEMISTRY
Old star, new trick
Pasadena, CA (SPX) May 02, 2012
The Big Bang produced lots of hydrogen and helium and a smidgen of lithium. All heavier elements found on the periodic table have been produced by stars over the last 13.7 billion years. Astronomers analyze starlight to determine the chemical makeup of stars, the origin of the elements, the ages of stars, and the evolution of galaxies and the universe. Now for the first time, astronomers h ... read more


STELLAR CHEMISTRY
India's second moon mission Chandrayaan-2 to wait

European Google Lunar X Prize Teams Call For Science Payloads

Russia to Send Manned Mission to Moon by 2030

NASA Contract to Astrobotic Technology Investigates Prospecting for Lunar Resources

STELLAR CHEMISTRY
Opportunity's Eighth Anniversary View From Greeley Haven

Studies of 'Amboy' Rock Continue as Solar Energy Improves

New form of Mars lava flow dicovered

100 Days and Counting to NASA's Curiosity Mars Rover Landing

STELLAR CHEMISTRY
Space -- the next frontier for Hillary Clinton?

Company to Create 'Gas Stations' in Space

Boeing, NASA Sign Agreement on Mission Support for CST-100

Parachutes for NASA crew capsule tested

STELLAR CHEMISTRY
China's Lunar Docking

Shenzhou-9 may take female astronaut to space

China to launch 100 satellites during 2011-15

Three for Tiangong

STELLAR CHEMISTRY
Space Station's Robotic Crew Member Designed to Look, Move and Work Like a Human

Expedition 30 Lands in Kazakhstan

Three astronauts to land from ISS Friday

Expedition 30 Crew Returning Home Friday

STELLAR CHEMISTRY
A highly symbolic mission is reflected in words and images on Ariane 5's payload fairing

A "mirror image" payload refueling for Arianespace's next Ariane 5 mission

SpaceX test fires rocket ahead of ISS cargo launch

India to ferry heaviest foreign satellite in August

STELLAR CHEMISTRY
Three Earthlike planets identified by Cornell astronomers

Some Stars Capture Rogue Planets

ALMA Reveals Workings of Nearby Planetary System

UF-led team uses new observatory to characterize low-mass planets orbiting nearby star

STELLAR CHEMISTRY
Australian rare earths miner sues Malaysian opponents

NEMA Welcomes Legislation on Federal Helium Policy

Plan to Counter Space Threats Proposed

US Army Awards Lockheed Martin $391 Million for Counterfire Radar Production




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement