. 24/7 Space News .
CLIMATE SCIENCE
Estuaries like Chesapeake Bay could contribute more to global warming than once thought
by Staff Writers
Solomons MD (SPX) Jun 24, 2016


File image.

We all know by now that methane is bad for the environment. It's one of those greenhouse gases that trap heat in the earth's atmosphere and contribute to our warming climate. It's regularly emitted during the production and transport of coal and oil, and sometimes even cows get the blame. However, a new study finds that estuaries like the Chesapeake Bay could be contributing significantly more methane to the atmosphere than once thought.

Estuaries and coastal systems are thought to be a relatively small source of atmospheric methane, as little as 3%. However, a new study from the University of Maryland Center for Environmental Science (UMCES) found that the methane building up in the Chesapeake Bay alone, if released, would be equal to the current estimates for all the estuaries in the world combined.

"This is just one estuary and there are many others that go anoxic in the summertime," said study author Laura Lapham of UMCES' Chesapeake Biological Laboratory. "We need to look at these eutrophic estuaries as perhaps a larger source of methane than we thought. This is a side effect of eutrophication that hasn't been investigated in the Bay."

Like many bodies of water, the Chesapeake Bay is overwhelmed with nutrients that cause a type of pollution called eutrophication. Every spring, an influx of nitrogen and phosphorus from lawns, farms, and sewage treatment plants runs into the water of the Bay. These nutrients feed algae as the water warms up in the summer, causing blooms that suck the oxygen out of the water, causing large areas of low oxygen (hypoxia), known as "dead zones," that make it difficult for fish, crabs and other underwater life to live. Some areas closer to the bottom and in the surface layers of the mud may suffer from no oxygen at all (anoxic) during these periods.

Since dead zones in the coastal ocean and estuaries are expanding throughout the world, Lapham decided to look at the Chesapeake Bay, the largest estuary in the United States, to understand what happens to methane release in a body of water that undergoes dead zones on a regular basis.

"We wanted to capture the dynamic nature of oxygen and methane concentrations in one of the most well-known eutrophic estuaries," said Lapham. "We found that places like the Chesapeake Bay could be a more significant input of methane to the atmosphere than we thought."

Methane is colorless, odorless, naturally occurring gas that is normally under control in estuaries like the Chesapeake Bay. Microbes make methane in the mud, and other methane-loving microbes usually consume the gas. However, when there is no oxygen in the water - as regularly occurs at the bottom of the Chesapeake Bay during the summer time - the microbes can't do their job and dissolved methane is released into the water column and rests there at the bottom. If a storm rolls through and mixes up the water, the methane can make it to the surface and into the atmosphere.

Lapham studied the water at the bottom of the Chesapeake Bay over the course of a summer, setting up instruments perched above the mud that would track any signs of methane being released into the water. She found that in anoxic conditions, when there is no oxygen in the bottom layers of the Chesapeake Bay's waters, dissolved methane built up, probably coming from the mud, and when storms mixed up the invisible layers of the Bay's waters, the methane made it to the surface and into the atmosphere.

"Taken together, the time-series data shows that methane flux from the Bay is variable, potentially significant, and dependent upon storms," said Lapham.

The study found that in April methane concentrations were low when bottom waters were fully oxygenated and increased as anoxic conditions set in. By mid-July, methane concentrations peaked, most likely coming from the sediments. By early August, concentrations decreased until they returned to background levels when normal oxygen conditions returned in late September.

Her team found that concentrations of methane near the bottom of the Bay peaked in mid-July, when the Bay was gasping for oxygen the most, and in the fall when storms stirred up the water and brought the methane to the surface. They estimated that 85% of the methane in the bottom water is oxidized in the water column in September.

While most of the built up methane was consumed by the end of the anoxic period, methane concentrations measured in surface water samples in June and September suggest that there was still a significant flux of methane to the atmosphere.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Maryland Center for Environmental Science
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
CLIMATE SCIENCE
Which animals will cope with climate change droughts
Townsville, Australia (SPX) Jun 23, 2016
JCU's Dr Tasmin Rymer led a study that produced a template measuring several crucial factors, including an animal's physiology and environment, to determine how it would handle a severe drought. Dr Rymer said scientists believe the current rate of climate change is unprecedented in Earth's history and will lead to more and worse droughts in many areas. "So we developed a theoretical ... read more


CLIMATE SCIENCE
US may approve private venture moon mission: report

Fifty Years of Moon Dust

Airbus Defence and Space to guide lunar lander to the Moon

A new, water-logged history of the Moon

CLIMATE SCIENCE
A little help from friends

CaSSIS Sends First Image of Mars

Rover Opportunity Wrapping up Study of Martian Valley

Delayed ExoMars mission gets 77-mln-euro boost

CLIMATE SCIENCE
TED Talks aim for wider global reach

Disney brings its brand to Shanghai with new theme park

Tech, beauty intersect in Silicon Valley

Second Starliner Begins Assembly in Florida Factory

CLIMATE SCIENCE
China to send Chang'e-4 to south pole of moon's far-side

Experts Fear Chinese Space Station Could Crash Into Earth

Bolivia to pay back loan to China for Tupac Katari satellite

China plans 5 new space science satellites

CLIMATE SCIENCE
Three astronauts touch down after 6 months in space

Cygnus spacecraft begins next phase of OA-6 mission

Cygnus space capsule departs International Space Station

Russian, US Astronauts to Return From ISS on June 18

CLIMATE SCIENCE
McCain Stands Down: Congress Reaches Compromise on Russian Rockets

Launch Vehicle Ascent Trajectories and Sequencing

MUOS-5 satellite encapsulated for launch

Airbus Safran Launchers confirms the maturity of the Ariane 6 launcher

CLIMATE SCIENCE
San Francisco State University astronomer helps discover giant planet orbiting 2 suns

Unexpected excess of giant planets in star cluster

A Young Super-Neptune Offers Clues to the Origin of Close-In Exoplanets

Exoplanet Mission Completes Design Milestone

CLIMATE SCIENCE
Innovative device allows 3-D imaging of the breast with less radiation

New approach to microlasers

A new trick for controlling emission direction in microlasers

Researchers open hairy new chapter in 3-D printing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.