Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. 24/7 Space News .




STELLAR CHEMISTRY
Entire galaxies feel the heat from newborn stars - Bursts of star birth can curtail future galaxy growth
by Staff Writers
Paris (ESA) Apr 30, 2013


This illustration shows a messy, chaotic galaxy undergoing bursts of star formation. This star formation is intense; it was known that it affects its host galaxy, but this new research shows it has an even greater effect than first thought. The winds created by these star formation processes stream out of the galaxy, ionising gas at distances of up to 650 000 light-years from the galactic centre. Image credit: ESA, NASA, L. Calcada

Astronomers using the NASA/ESA Hubble Space Telescope have shown for the first time that bursts of star formation have a major impact far beyond the boundaries of their host galaxy. These energetic events can affect galactic gas at distances of up to twenty times greater than the visible size of the galaxy - altering how the galaxy evolves, and how matter and energy is spread throughout the Universe.

When galaxies form new stars, they sometimes do so in frantic episodes of activity known as starbursts. These events were commonplace in the early Universe, but are rarer in nearby galaxies.

During these bursts, hundreds of millions of stars are born, and their combined effect can drive a powerful wind that travels out of the galaxy. These winds were known to affect their host galaxy - but this new research now shows that they have a significantly greater effect than previously thought.

An international team of astronomers observed 20 nearby galaxies, some of which were known to be undergoing a starburst. They found that the winds accompanying these star formation processes were capable of ionising [1] gas up to 650 000 light-years from the galactic centre - around twenty times further out than the visible size of the galaxy.

This is the first direct observational evidence of local starbursts impacting the bulk of the gas around their host galaxy, and has important consequences for how that galaxy continues to evolve and form stars.

"The extended material around galaxies is hard to study, as it's so faint," says team member Vivienne Wild of the University of St. Andrews. "But it's important - these envelopes of cool gas hold vital clues about how galaxies grow, process mass and energy, and finally die. We're exploring a new frontier in galaxy evolution!"

The team used the Cosmic Origins Spectrograph (COS) instrument [2] on the NASA/ESA Hubble Space Telescope to analyse light from a mixed sample of starburst and control galaxies.

They were able to probe these faint envelopes by exploiting even more distant objects - quasars, the intensely luminous centres of distant galaxies powered by huge black holes. By analysing the light from these quasars after it passed through the foreground galaxies, the team could probe the galaxies themselves.

"Hubble is the only observatory that can carry out the observations necessary for a study like this," says lead author Sanchayeeta Borthakur, of Johns Hopkins University.

"We needed a space-based telescope to probe the hot gas, and the only instrument capable of measuring the extended envelopes of galaxies is COS."

The starburst galaxies within the sample were seen to have large amounts of highly ionised gas in their halos - but the galaxies that were not undergoing a starburst did not. The team found that this ionisation was caused by the energetic winds created alongside newly forming stars.

This has consequences for the future of the galaxies hosting the starbursts. Galaxies grow by accreting gas from the space surrounding them, and converting this gas into stars. As these winds ionise the future fuel reservoir of gas in the galaxy's envelope, the availability of cool gas falls - regulating any future star formation.

"Starbursts are important phenomena - they not only dictate the future evolution of a single galaxy, but also influence the cycle of matter and energy in the Universe as a whole," says team member Timothy Heckman, of Johns Hopkins University. "The envelopes of galaxies are the interface between galaxies and the rest of the Universe - and we're just beginning to fully explore the processes at work within them."

The team's results will appear in the 1 May 2013 issue of The Astrophysical Journal.

.


Related Links
Hubble instruments: COS
Stellar Chemistry, The Universe And All Within It






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





STELLAR CHEMISTRY
Looking for Life by the Light of Dying Stars
Tel Aviv, Israel (SPX) Apr 30, 2013
Because it has no source of energy, a dead star - known as a white dwarf - will eventually cool down and fade away. But circumstantial evidence suggests that white dwarfs can still support habitable planets, says Prof. Dan Maoz of Tel Aviv University's School of Physics and Astronomy. Now Prof. Maoz and Prof. Avi Loeb, Director of Harvard University's Institute for Theory and Computation ... read more


STELLAR CHEMISTRY
Characterizing The Lunar Radiation Environment

Russia rekindles Moon exploration program, intends setting up first human outposts there

Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

STELLAR CHEMISTRY
Dutch reality show seeks one-way astronauts for Mars

Accurate pointing by Curiosity

NASA Mars Orbiter Images May Show 1971 Soviet Lander

Opportunity is in position for solar conjunction at 'Cape York' on the rim of Endeavour Crater

STELLAR CHEMISTRY
NASA's Chief Defends Commercial Spaceflight Agreements

NASA Invites the Public to Fly Along with Voyager

Google's Brin keeps spotlight on future technologies

Mysterious water on Jupiter came from comet smash

STELLAR CHEMISTRY
Yuanwang III, VI depart for space-tracking missions

Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

STELLAR CHEMISTRY
Cargo spaceship docks with ISS despite antenna mishap

ISS Communications Test Bed Checks Out; Experiments Begin

Spacewalkers Deploy Plasma Experiment, Install Navigational Aid

The New and Improved ISS Facilities Brochure

STELLAR CHEMISTRY
O3b Networks' first four satellites arrive for the next Arianespace Soyuz launch

On the record with... Stephane Israel, Arianespace Chairman and CEO

Vega's three-satellite payload is integrated and ready for launch

NASA Seeks Innovative Suborbital Flight Technology Proposals

STELLAR CHEMISTRY
Astronomer studies far-off worlds through 'characterization by proxy'

Mysterious Hot Spots Observed In A Cool Red Supergiant

Orbital Selected By NASA for TESS Astrophysics Satellite

Star-and Planet-Forming Regions May Hold Key to Life's Chirality

STELLAR CHEMISTRY
NASA, Partners Solicit Creative Materials Manufacturing Solutions

Vaterite: Crystal within a crystal helps resolve an old puzzle

Space debris problem now urgent - scientists

Nothing Bugs These NASA Aeronautical Researchers




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement