. 24/7 Space News .
NANO TECH
Electron beam microscope directly writes nanoscale features in liquid with metal ink
by Staff Writers
Oak Ridge TN (SPX) Oct 06, 2016


File image.

Scientists at the Department of Energy's Oak Ridge National Laboratory are the first to harness a scanning transmission electron microscope (STEM) to directly write tiny patterns in metallic "ink," forming features in liquid that are finer than half the width of a human hair.

The automated process is controlled by weaving a STEM instrument's electron beam through a liquid-filled cell to spur deposition of metal onto a silicon microchip. The patterns created are "nanoscale," or on the size scale of atoms or molecules.

Usually fabrication of nanoscale patterns requires lithography, which employs masks to prevent material from accumulating on protected areas. ORNL's new direct-write technology is like lithography without the mask.

Details of this unique capability are published online in Nanoscale, a journal of the Royal Society of Chemistry, and researchers are applying for a patent. The technique may provide a new way to tailor devices for electronics and other applications.

"We can now deposit high-purity metals at specific sites to build structures, with tailored material properties for a specific application," said lead author Raymond Unocic of the Center for Nanophase Materials Sciences (CNMS), a DOE Office of Science User Facility at ORNL. "We can customize architectures and chemistries. We're only limited by systems that are dissolvable in the liquid and can undergo chemical reactions."

The experimenters used grayscale images to create nanoscale templates. Then they beamed electrons into a cell filled with a solution containing palladium chloride. Pure palladium separated out and deposited wherever the electron beam passed.

Liquid environments are a must for chemistry. Researchers first needed a way to encapsulate the liquid so the extreme dryness of the vacuum inside the microscope would not evaporate the liquid. The researchers started with a cell made of microchips with a silicon nitride membrane to serve as a window through which the electron beam could pass.

Then they needed to elicit a new capability from a STEM instrument. "It's one thing to utilize a microscope for imaging and spectroscopy. It's another to take control of that microscope to perform controlled and site-specific nanoscale chemical reactions," Unocic said. "With other techniques for electron-beam lithography, there are ways to interface that microscope where you can control the beam. But this isn't the way that aberration-corrected scanning transmission electron microscopes are set up."

Enter Stephen Jesse, leader of CNMS's Directed Nanoscale Transformations theme. This group looks at tools that scientists use to see and understand matter and its nanoscale properties in a new light, and explores whether those tools can also transform matter one atom at a time and build structures with specified functions. "Think of what we are doing as working in nanoscale laboratories," Jesse said. "This means being able to induce and stop reactions at will, as well as monitor them while they are happening."

Jesse had recently developed a system that serves as an interface between a nanolithography pattern and a STEM's scan coils, and ORNL researchers had already used it to selectively transform solids. The microscope focuses the electron beam to a fine point, which microscopists could move just by taking control of the scan coils. Unocic with Andrew Lupini, Albina Borisevich and Sergei Kalinin integrated Jesse's scan control/nanolithography system within the microscope so that they could control the beam entering the liquid cell. David Cullen performed subsequent chemical analysis.

"This beam-induced nanolithography relies critically on controlling chemical reactions in nanoscale volumes with a beam of energetic electrons," said Jesse. The system controls electron-beam position, speed and dose. The dose--how many electrons are being pumped into the system--governs how fast chemicals are transformed.

This nanoscale technology is similar to larger-scale activities, such as using electron beams to transform materials for 3D printing at ORNL's Manufacturing Demonstration Facility. In that case, an electron beam melts powder so that it solidifies, layer by layer, to create an object.

"We're essentially doing the same thing, but within a liquid," Unocic said. "Now we can create structures from a liquid-phase precursor solution in the shape that we want and the chemistry that we want, tuning the physiochemical properties for a given application."

Precise control of the beam position and the electron dose produces tailored architectures. Encapsulating different liquids and sequentially flowing them during patterning customizes the chemistry too.

The current resolution of metallic "pixels" the liquid ink can direct-write is 40 nanometers, or twice the width of an influenza virus. In future work, Unocic and colleagues would like to push the resolution down to approach the state of the art of conventional nanolithography, 10 nanometers. They would also like to fabricate multi-component structures.

Research paper: "Direct-write liquid phase transformations with a scanning transmission electron microscope."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Oak Ridge National Laboratory
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
NANO TECH
NIST-made 'sun and rain' used to study nanoparticle release from polymers
Washington DC (SPX) Oct 05, 2016
If the 1967 film "The Graduate" were remade today, Mr. McGuire's famous advice to young Benjamin Braddock would probably be updated to "Plastics ... with nanoparticles." These days, the mechanical, electrical and durability properties of polymers - the class of materials that includes plastics - are often enhanced by adding miniature particles (smaller than 100 nanometers or billionths of a mete ... read more


NANO TECH
Exploration Team Shoots for the Moon with Water-Propelled Satellite

Space tourists eye $150mln Soyuz lunar flyby

Roscosmos to spend $7.5Mln studying issues of manned lunar missions

Lockheed Martin, NASA Ink Deal for SkyFire Infrared Lunar Discovery Satellite

NANO TECH
Yorkshire salt mine could help shed light on Martian life

NASA's Curiosity Rover Begins Next Mars Chapter

Pioneering Space Requires Living Off the Land in the Solar System

Unusual Martian region leaves clues to planet's past

NANO TECH
New Zealand government open-minded on space collaboration

Students team up with NASA for space coms and navigation

Software star Google expected to flex hardware muscle

Elon Musk an innovator wary of humanity's future

NANO TECH
Beijing exhibition means plenty of "space" for everyone

Space for Shenzhou 11

Waiting for Shenzhou 11

Tiangong-2 space lab enters preset orbit for docking with manned spacecraft

NANO TECH
Airbus DS and Neumann Space sign payload agreement for ISS

NASA, JAXA Focus on Maximizing Scientific Output From Space Station

Manned launch of Soyuz MS-02 maybe postponed to Nov 1

Russia cancels manned space launch over 'technical' issues

NANO TECH
ULA gets $860 million contract modification for expendable launch vehicle

Ariane 5 reaches the launch zone for Arianespace's October 4 liftoff

Rocket launch site to open up New Zealand space industry: Minister

NASA develops satellite concept to exploit rideshare opportunities

NANO TECH
The death of a planet nursery?

Protoplanetary Disk Around a Young Star Exhibits Spiral Structure

New Low-Mass Objects Could Help Refine Planetary Evolution

Pluto's heart sheds light on a possible buried ocean

NANO TECH
French-Japanese laboratory to study materials under extreme conditions

Solving a cryptic puzzle with a little help from a hologram

Large volumes of data from ITER transferred to Japan at unprecedented speeds

Brothers behind Ubisoft locked in real-life battle for control









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.