Subscribe free to our newsletters via your
. 24/7 Space News .




PHYSICS NEWS
Einstein Theory Passes Strict Test In Unique Stellar Laboratory
by Staff Writers
Washington DC (SPX) Jul 07, 2008


This double pulsar PSR J0737-3039A/B is the only known pulsar-pulsar system, that is, two neutron stars orbiting each other and both visible as radio pulsars. Credit: NRAO

Taking advantage of a unique cosmic configuration, astronomers have measured an effect predicted by Albert Einstein's theory of General Relativity in the extremely strong gravity of a pair of superdense neutron stars. Essentially, the famed physicist's 93-year-old theory passed yet another test.

Scientists at McGill University used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to do a four-year study of a double-star system unlike any other known in the Universe. The system is a pair of neutron stars, both of which are seen as pulsars that emit lighthouse-like beams of radio waves.

"Of about 1700 known pulsars, this is the only case in which two pulsars orbit around each other," said Rene Breton, a graduate student at McGill University in Montreal, Canada. In addition, the stars' orbital plane is aligned nearly perfectly with their line of sight to the Earth. This causes the signal of one to be blocked, or eclipsed, as it circles the other.

"Those eclipses are the key to making a measurement that could never be done before," Breton said.

Einstein's 1915 theory predicted that in a close system of two very massive objects, such as neutron stars, one object's gravitational tug, along with an effect of its spinning around its axis, should cause the spin axis of the other to wobble, or precess.

Studies of other pulsars in binary systems had indicated that such wobbling occurred, but could not produce precise measurements of the amount of wobbling.

"Measuring the amount of wobbling is what tests the details of Einstein's theory and gives a benchmark that any alternative gravitational theories must meet," said Scott Ransom of the National Radio Astronomy Observatory.

The eclipses allowed the astronomers to pin down the geometry of the double-pulsar system and track changes in the orientation of the spin axis of one of them. As one pulsar's spin axis slowly moved, the pattern of signal blockages as the other passed behind it also changed. The signal from the pulsar in back is absorbed by the ionized gas in the other's magnetosphere.

Pulsars, first discovered in 1967, are the "corpses" of massive stars that have exploded as supernovae. What is left after the explosion is a superdense neutron star that packs more than the mass of our Sun into the size of an average city. Beams of radio waves stream outward from the poles of the star's intense magnetic field and sweep around as the star rotates, as often as hundreds of times a second.

The pair of pulsars studied with the GBT is about 1,700 light-years from Earth. The average distance between the two is only about twice the distance from the Earth to the Moon. The two orbit each other in just under two and a half hours.

"A system like this, with two very massive objects very close to each other, is precisely the kind of extreme "cosmic laboratory" needed to test Einstein's prediction," said Victoria Kaspi, leader of McGill University's Pulsar Group.

Theories of gravity don't differ significantly in "ordinary" regions of space such as our own Solar System. In regions of extremely strong gravity fields, such as near a pair of close, massive objects, however, differences are expected to show up.

In the binary-pulsar study, General Relativity "passed the test" provided by such an extreme environment, the scientists said.

"It's not quite right to say that we have now 'proven' General Relativity," Breton said. "However, so far, Einstein's theory has passed all the tests that have been conducted, including ours."

Breton, Kaspi and Ransom worked with Michael Kramer of the Jodrell Bank Observatory at the University of Manchester in Great Britain; Maura McLaughlin of West Virginia University and the NRAO; Maxim Lyutikov of Purdue University and other colleagues in Canada, the U.S., France and Italy. The researchers presented their work in an article in the July 4 issue of Science Magazine.

.


Related Links
Renees Double Pulsar Page
The Physics of Time and Space






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








PHYSICS NEWS
Advanced LIGO Project Funded By National Science Foundation
Pasadena CA (SPX) Apr 03, 2008
The Advanced LIGO Project, an upgrade in sensitivity for LIGO (Laser Interferometer Gravitational-wave Observatories), was approved by the National Science Board in its meeting on March 27. The National Science Foundation will fund the $205.12 million, seven-year project, starting with $32.75 million in 2008. This major upgrade will increase the sensitivity of the LIGO instruments by a ... read more


PHYSICS NEWS
China Almost Done With Map Of Moon Surface

Looking For Early Earth...On The Moon

Moon-Bound NASA Spacecraft Passes Major Preflight Tests

Northrop Grumman Completes LCROSS Thermal Vacuum Testing

PHYSICS NEWS
Phoenix Set To Bake Some Ice-Rich Samples This Week

Will We Ever Reach Mars

Phoenix To Bake Ice-Rich Sample Next Week

Rain Showers On Mars

PHYSICS NEWS
Analex Awarded Three-Year Option On NASA Expendable Launch Vehicles Integrated Support

Russia seals agreement with private investor for space tourism

Fly me to the Moon: Japan firm offers weddings in space

NASA Goddard Has More Than A Dozen Exciting Missions In Next Year

PHYSICS NEWS
China Makes Breakthrough In Developing Next-Generation Long March Rocket

China's Shot Heard Around The Galaxy

Shenzhou VII Research Crew Ready To Set Out For Launch Center

A Better Focus On Shenzhou

PHYSICS NEWS
NASA plans two ISS spacewalks next week

Discovery undocks from ISS

Shuttle astronauts bid farewell to space station crew

Shuttle Astronauts Bid Farewell To Space Station Crew

PHYSICS NEWS
Arianespace Launches ProtoStar I For Asian DTH Market

ELA-3 Launch Zone Receives Its Fourth Ariane 5 Of 2008

Russia Launches Rocket With Military Satellite

Inmarsat And ILS Set August 14 For Proton Flight With Inmarsat Satellite

PHYSICS NEWS
Chemical Clues Point To Dusty Origin For Earth-Like Planets

Astronomers discover clutch of 'super-Earths'

Vanderbilt Astronomers Getting Into Planet-Finding Game

NASA Selects MIT-Led Team To Develop Planet-Searching Satellite

PHYSICS NEWS
NASA Considers Development Of Student-Led Satellite Initiative

SATLYNX Completes 300 Site SCADA Network Rollout For EDF Energy

Herschel Undergoes Acoustic And Vibration Tests

Russian-US Launch Firm To Put Satellite In Orbit In August




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement