Subscribe to our free daily newsletters
. 24/7 Space News .




Subscribe to our free daily newsletters



TECH SPACE
Eco-friendly tech could transform European aluminum industry by 2050
by Staff Writers
Munich, Germany (SPX) Mar 14, 2016


Primary aluminium production is energy intensive process - it requires approximately 37 GJ of thermal energy and 58 GJ of electricity per tonne of sawn aluminium ingot produced (this thermal energy consumption is around twice the required per tonne of steel produced from the integrated route -blast furnace-basic oxygen furnace- and the electricity consumption is more than ten times the required per tonne of steel from the recycling route (electrical arc furnace).

Adopting innovative technological solutions - currently in early research phase - instead of following a conservative technology development path could slash the direct greenhouse gasses (GHG) emissions of aluminium production by 66% in 2050 and reduce the associated energy consumption by 21%, according to a JRC report. The reductions between 2010 and 2050 for primary aluminium production are even higher, amounting to 72% and 23% respectively. The findings stem from an analysis of the current status of the aluminium industry in EU28 and Iceland, which quantifies the potential for GHG emission reduction and energy efficiency.

The current EU target for 2030 of reducing GHG emissions by at least 40% below 1990 levels will help the long-term objective of emissions cut by 80-95% by 2050 in the context of necessary reductions by developed countries as a group.

The work carried out for this report supports the European Commission's 2015 Energy Union package which - among other - highlights the need for additional research priorities such as carbon capture and storage (CCS) and inert anode technology (in the aluminium production process) to reach the 2050 climate objectives in a cost-effective way. The European aluminium industry has made substantial efforts to improve its performance in terms of energy efficiency and GHG emissions. However, to achieve the ambitious EU targets, further improvements are required.

JRC scientists compiled data on existing aluminium production facilities, their production characteristics as well as the best available and promising innovative production technologies. The latter involve the use of dynamic AC magnetic fields, wetted drained cathodes, inert anodes or carbon capture and storage (CCS).

The model used identifies cost-effective improvements in aluminium production at facility level and the impact of their implementation on energy consumption and GHG emissions, based on the condition that investments are recovered within five years and on the assumption that there are no barriers for the timely commercialisation of the identified technological solutions.

The analysis shows that most of the resulting reductions come from technologies that are in early stages of research (e.g. inert anodes that are in a technology readiness level (TRL) 4 or 5, or CCS at even lower level). Therefore, harnessing this potential requires effective policy push to create the right conditions to allow the further development and commercialisation of these innovative technologies.

Primary aluminium production is energy intensive process - it requires approximately 37 GJ of thermal energy and 58 GJ of electricity per tonne of sawn aluminium ingot produced (this thermal energy consumption is around twice the required per tonne of steel produced from the integrated route -blast furnace-basic oxygen furnace- and the electricity consumption is more than ten times the required per tonne of steel from the recycling route (electrical arc furnace).

The overall direct CO2 equivalent emissions from the process amount to around 3.5 Mt of CO2 per tonne of sawn aluminium ingot. If the average CO2 associated with the generation of the electricity used is calculated, this would add additional 7.4 Mt of CO2 per tonne of aluminium ingot. Secondary aluminium production requires as little as 5 % of the energy needed for primary aluminium production.

The total indigenous production of European aluminium industry was about 8.9 Mt in 2013, excluding the ingots imported (3.3 Mt) and the re-melted aluminium (6.1 Mt). The primary aluminium contributes to the aluminium output with about 4.2 Mt and the recycling route with 4.7 Mt.

Research Report: "Energy efficiency and GHG emissions: prospective scenarios for the aluminium industry"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
European Commission Joint Research Centre
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Ruby red improves in the microwave oven
Washington DC (SPX) Mar 13, 2016
Researchers from India's CSIR - Institute of Minerals and Materials Technology (IMMT) have tested a new way to improve the colour, clarity and lustre of rubies: microwaves. The study, conducted by Subhashree Swain, is published in Springer's journal Applied Physics A. Rubies are among the world's most popular precious gemstones, and are also used in high power switches and sensors. Most na ... read more


TECH SPACE
China to use data relay satellite to explore dark side of moon

NASA May Return to Moon, But Only After Cutting Off ISS

Lunar love: When science meets artistry

New Lunar Exhibit Features NASA's Lunar Reconnaissance Orbiter Imagery

TECH SPACE
Mars robot launch now scheduled for May 2018: NASA

Proton-M carrier rocket assembled ahead of Mars Mission

Great tilt gave Mars a new face

Space simulation crew hits halfway mark til August re-entry

TECH SPACE
Greece tourism insists on sunny outlook amid refugee crisis

First tomatoes, peas harvested from mock Martian farm

Commercial Crew: Building in Safety from the Ground Up in a Unique Way

Russian company set to usher in era of suborbital tourism

TECH SPACE
Aim Higher: China Plans to Send Rover to Mars in 2020

China's lunar probe sets record for longest stay

Moving in to Tiangong 2

Logistics Rule on Tiangong 2

TECH SPACE
International Space Station's '1-year crew' returns to Earth

Scott Kelly and Mikhail Kornienko return to Earth after One-Year Mission

Paragon wins NASA ISS water processor development contract

NASA's Science Command Post Supports Scott Kelly's Year In Space

TECH SPACE
Ariane 5 launch contributes to Ariane 6 development

SpaceX launches SES-9 satellite to GEO; but booster landing fails

US Space Company in Talks With India to Launch Satellite

At last second, SpaceX delays satellite launch again

TECH SPACE
Evidence found for unstable heavy element at solar system formation

Imaging Technique May Help Discover Earth-Like Planets Around Other Stars

Newly discovered planet in the Hyades cluster could shed light on planetary evolution

Imaging technique may help discover Earth-like planets

TECH SPACE
UMass Amherst team offers new, simpler law of complex wrinkle patterns

First code of conduct for the use of virtual reality established

New laser achieves wavelength long sought by laser developers

Superman can start worrying - we've got the formula for (almost) kryptonite




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement