. 24/7 Space News .
ICE WORLD
East Antarctic Ice Sheet has stayed frozen for 14 million years
by Staff Writers
Philadelphia PA (SPX) Dec 17, 2015


Antarctica's Friis Hills in the central Dry Valleys of the eastern portion of the continent contains ancient lake deposits indicating that the area has remained frozen for 14 to 17.5 million years. Image courtesy University of Pennsylvania

Antarctica was once a balmier place, lush with plants and lakes. Figuring out just how long the continent has been a barren, cold desert of ice can give clues as to how Antarctica responded to the effects of past climates and can perhaps also indicate what to expect there in the future as Earth's atmospheric concentration of carbon dioxide grows.

In a new study in Scientific Reports, University of Pennsylvania researchers use an innovative technique to date one of Antarctica's ancient lake deposits. They found that the deposits have remained frozen for at least the last 14 million years, suggesting that the surrounding region, the East Antarctic Ice Sheet, or EAIS, has likewise remained intact.

The work adds new support for the idea that the EAIS did not experience significant melting even during the Pliocene, a period from 3 to 5 million years ago, when carbon dioxide concentrations rivaled what they are today.

"The Pliocene is sometimes thought to be an analog to what Earth will be like if global warming continues," said Jane K. Willenbring, an assistant professor in the Department of Earth and Environmental Science in Penn's School of Arts and Sciences. "This gives us some hope that the East Antarctic Ice Sheet could be stable in today's and future climate conditions."

Willenbring collaborated on the study with lead author and Penn graduate student Rachel D. Valletta, as well as Adam R. Lewis and Allan C. Ashworth from the University of North Dakota and Marc Caffee from Purdue University.

Current climate change projections indicate that the marine portion of the West Antarctic Ice Sheet is "a goner," Willenbring said. Studies from the past few years suggest that sea level will likely rise a few meters as that ice melts. But the East Antarctic Ice Sheet is 20 times more massive. If it melted, the ensuing sea level rise would be even more catastrophic than the western peninsula's dissolution.

To shed light on what could happen in the future to the EAIS, geologists often look to the past. But there is not a scientific consensus about how the EAIS has behaved in different climates throughout history. Some scientists believe the ice sheet experienced significant melting during the relatively warmer conditions of the Pliocene, while others think it has remained almost entirely frozen for the last 14 million years.

Willenbring and colleagues hoped to help clarify the history of the EAIS. They traveled to Antarctica's Friis Hills in the central Dry Valleys of the eastern portion of the continent. About a foot beneath the surface are sediment deposits from an ancient lake which is known from animal fossils to have been freshwater. Earlier dating established that the volcanic ash deposits at the bottom of the ancient lake are 20 million years old.

To see if any melting had occurred in the interim, they analyzed radioactive isotopes of beryllium known as beryllium-10, which form in the atmosphere when cosmic rays collide with oxygen and nitrogen atoms.

"Beryllium-10 sticks on to particles quite easily and is associated with lake deposits," Willenbring said. "We wanted to see if we could use this isotope to figure out how long the sediment was in place and isolated from liquid water."

Beryllium-10 has a known half-life of 1.4 million years. After estimating an initial level of initial concentration of beryllium-10 in their lake samples, the researchers were able to estimate the age of the sediments to be between 14 and 17.5 million years ago.

"We found that the beryllium-10 was almost completely gone, within the resolution of our technique," Willenbring said.

Willenbring said the team was confident that the area had remained frozen since then because if there had been melting, the water would have penetrated the sediments and "reset" the beryllium-10 measurements.

"This means that the sediment is definitely older than the time when a lot of people think that Antarctica might have been quite deglaciated," she said.

By offering support for the idea that the EAIS has been largely stable during the last 14 million years, the research offers some hope that a massive collapse of the ice sheet, and associated sea level rise of tens of meters, may not be imminent.

Willenbring, however, cautions that even though carbon dioxide levels in the Pliocene may be analogous to today's levels, the two situations are not equivalent and thus any conclusions can only be taken so far.

"Even though the Pliocene conditions could be an analog for CO2 concentrations today, we've probably never experienced such a fast transition to warm temperatures as we're seeing right now," she said.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
University of Pennsylvania
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ICE WORLD
New research shows Earth's tilt influences climate change
Baton Rouge LA (SPX) Dec 16, 2015
LSU paleoclimatologist Kristine DeLong contributed to an international research breakthrough that sheds new light on how the tilt of the Earth affects the world's heaviest rainbelt. DeLong analyzed data from the past 282,000 years that shows, for the first time, a connection between the Earth's tilt called obliquity that shifts every 41,000 years, and the movement of a low pressure band of ... read more


ICE WORLD
Rare full moon on Christmas Day

LADEE Mission Shows Force of Meteoroid Strikes on Lunar Exosphere

XPRIZE verifies moon express launch contract, kicking off new space race

Gaia's sensors scan a lunar transit

ICE WORLD
Insight shipped to California for March launch to Mars

New Mars rover findings revealed at American Geophysical Union Conference

Opportunity performs a week of robotic arm at Marathon Valley

Rocks Rich in Silica Present Puzzles for Mars Rover Team

ICE WORLD
Researchers Recall Work on First Rendezvous in Space

NASA Accepting Applications for Future Explorers

China drives global patent applications to new high

Australia seeks 'ideas boom' with tax breaks, visa boosts

ICE WORLD
Agreement with Chinese Space Tech Lab Will Advance Exploration Goals

China launches new communication satellite

China's indigenous SatNav performing well after tests

China launches Yaogan-29 remote sensing satellite

ICE WORLD
Unscheduled spacewalk likely on Monday

NASA spacewalk to fix ISS rail car

British astronaut docks with ISS as country cheers debut trip

First Briton to travel to ISS blasts off into space

ICE WORLD
NASA orders second Boeing Crew Mission to ISS

ESA and Arianespace ink James Webb Space Telescope launch contract

Moscow Confirms Suspension of Russian-Ukrainian 'Dnepr' Rocket Launches

SpaceX Falcon 9 launch scrubbed until Monday

ICE WORLD
Nearby star hosts closest alien planet in the 'habitable zone'

ALMA reveals planetary construction sites

Monster planet is 'dancing with the stars'

Exoplanets Water Mystery Solved

ICE WORLD
Israel's Amos-5 Satellite Failure Caused by Power Supply Malfunction

Turning rice farming waste into useful silica compounds

Hybrid material presents potential for 4-D-printed adaptive devices

The artificial materials that came in from the cold









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.