. 24/7 Space News .
TECH SPACE
Dual frequency comb generated on a single chip using a single laser
by Staff Writers
New York, NY (SPX) Mar 06, 2018

A compact, integrated, silicon-based chip used to generate dual combs for extremely fast molecular spectroscopy.

In a new paper published in Science Advances, researchers under the direction of Columbia Engineering Professors Michal Lipson and Alexander Gaeta (Applied Physics and Applied Mathematics) have miniaturized dual-frequency combs by putting two frequency comb generators on a single millimeter-sized chip. "This is the first time a dual comb has been generated on a single chip using a single laser," says Lipson, Higgins Professor of Electrical Engineering.

A frequency comb is a special kind of light beam with many different frequencies, or "colors," all spaced from each other in an extremely precise way. When this many-color light is sent through a chemical specimen, some colors are absorbed by the specimen's molecules.

By looking at which colors have been absorbed, one can uniquely identify the molecules in the specimen with high precision. This technique, known as frequency-comb spectroscopy, enables molecular fingerprinting and can be used to detect toxic chemicals in industrial areas, to implement occupational safety controls, or to monitor the environment.

"Dual-comb spectroscopy is this technique put on steroids," says Avik Dutt, former student in Lipson's group (now a postdoctoral scholar at Stanford) and lead author of the paper. "By mixing two frequency combs instead of a single comb, we can increase the speed at which measurement are made by thousandfolds or more."

The work also demonstrated the broadest frequency span of any on-chip dual comb - i.e., the difference between the colors on the low-frequency end and the high-frequency end is the largest. This span enables a larger variety of chemicals to be detected with the same device, and also makes it easier to uniquely identify the molecules: the broader the range of colors in the comb, the broader the diversity of molecules that can see the colors.

Conventional dual-comb spectrometers, which have been introduced over the last decade, are bulky tabletop instruments, and not portable due to their size, cost, and complexity. In contrast, the Columbia Engineering chip-scale dual comb can easily be carried around and used for sensing and spectroscopy in field environments in real time.

"There is now a path for trying to integrate the entire device into a phone or a wearable device," says Gaeta, Rickey Professor of Applied Physics and of Materials Science.

The researchers miniaturized the dual comb by putting both frequency comb generators on a single millimeter-sized chip. They also used a single laser to generate both the combs, rather than the two lasers used in conventional dual combs, which reduced the experimental complexity and removed the need for complicated electronics.

To produce miniscule rings - tens of micrometers in diameter - that guide and enhance light with ultralow loss, the team used silicon nitride, a glass-like material they have perfected specifically for this purpose. By combining the silicon nitride with platinum heaters, they were able to very finely tune the rings and make them work in tandem with the single input laser.

"Silicon nitride is a widely used material in the silicon-based semiconductor industry that builds computer/smartphone chips," Lipson notes. "So, by leveraging the capabilities of this mature industry, we can foresee reliable fabrication of these dual comb chips on a massive scale at a low cost."

Using this dual comb, Lipson's and Gaeta's groups demonstrated real-time spectroscopy of the chemical dichloromethane at very high speeds, over a broad frequency range. A widely used organic solvent, dichloromethane is abundant in industrial areas as well as in wetland emissions.

The chemical is carcinogenic, and its high volatility poses acute inhalation hazards. Columbia Engineering's compact, chip-scale dual comb spectrometer was able to measure a broad spectrum of dichloromethane in just 20 microseconds (there are 1,000,000 microseconds in one second), a task that would have taken at least several seconds with conventional spectrometers.

As opposed to most spectrometers, which focus on gas detection, this new, miniaturized spectrometer is especially suited for liquids and solids, which have broader absorption features than gases?the range of frequencies they absorb is more spread out. "That's what our device is so good at generating," Gaeta explains.

"Our very broad dual combs have a moderate spacing between the successive lines of the frequency comb, as compared to gas spectrometers which can get away with a less broad dual comb but need a fine spacing between the lines of the comb."

The team is working on broadening the frequency span of the dual combs even further, and on increasing the resolution of the spectrometer by tuning the lines of the comb. In a paper published last November in Optics Letters, Gaeta's and Lipson's groups demonstrated some steps towards showing an increased resolution.

"One could also envision integrating the input laser into the chip for further miniaturizing the system, paving the way for commercializing this technology in the future," says Dutt.

Research Report: "On-chip dual comb source for spectroscopy."


Related Links
Columbia University School of Engineering and Applied Science
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Tricking photons leads to first-of-its-kind laser breakthrough
Orlando FL (SPX) Feb 15, 2018
A team of optics researchers from the University of Central Florida has demonstrated the first-ever nonmagnetic topological insulator laser, a finding that has the potential to substantially improve the efficiency, beam quality, and resilience of semiconductor laser arrays. These results are presented in two research papers, one describing the theory of topological lasers and the other experiments, published in Science. The project, led by Professors Mercedeh Khajavikhan and Demetrios Christ ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Cosmonaut, two US astronauts return to Earth from ISS

ISS Expedition 54 crew land safely in Kazakhstan

Aerospace introduces new Senior Advisory Council for space policy

International team publishes roadmap to enhance radioresistance for space colonization

TECH SPACE
SLS Intertank loaded for shipment, structural testing

Arianespace Soyuz set to launch 4 more sats for SES O3b constellation

Space-X lobs Spanish military satellite into orbit

Millenium tapped for certification of Vulcan space launch systems

TECH SPACE
Curiosity tests a new way to drill on Mars

NASA InSight mission to Mars arrives at launch site

Atacama Desert study offers glimpse of what life on Mars could look like

Life in world's driest desert seen as sign of potential life on Mars

TECH SPACE
China speeds up research, commercialization of space shuttles

Long March rockets on ambitious mission in 2018

Chinese taikonauts maintain indomitable spirit in space exploration: senior officer

China launches first shared education satellite

TECH SPACE
Lockheed Martin Completes Foundation for Satellite Factory of the Future

Lockheed Martin Completes Assembly on Arabsat's Newest Communications Satellite

Goonhilly goes deep space

Iridium Certus broadband readies for DOD wsers with COMSAT

TECH SPACE
Common bricks can be used to detect past presence of uranium, plutonium

Majorana runners go long range: New topological phases of matter unveiled

Researchers convert CO to CO2 with a single metal atom

Splitting crystals for 2-D metallic conductivity

TECH SPACE
NASA finds a large amount of water in an exoplanet's atmosphere

When two species become one: New study examines 'speciation reversal'

Alien life in our Solar System? Study hints at Saturn's moon

When do aging brown dwarfs sweep the clouds away?

TECH SPACE
Chasing a stellar flash with assistance from GAIA

New Horizons captures record-breaking images in the Kuiper Belt

Europa and Other Planetary Bodies May Have Extremely Low-Density Surfaces

JUICE ground control gets green light to start development









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.